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All work presented here is based on “Gauge invariant surface holonomy and
monopoles.” Theory Appl. Categ., Vol. 30, 2015, No. 42, pp 1319-1428

(arXiv:1410.6938), references therein, and a forthcoming article.
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Motivation

Motivation I

The Action for a charged particle of charge q and mass m moving along a
trajectory t 7→ x(t) on a manifold with a metric (M, g) is (locally) given by

S [x ,A] = −m

∫ √
g

(
dx

dt
,

dx

dt

)
dt + q

∫
A

(
dx

dt

)
dt −

∫
M

F ∧ ?F

where ? is the Hodge star operator, A is the 1-form electromagnetic
potential, and F := dA is the electromagnetic field strength. Notice that
the interaction term (the middle term) does not depend on the metric
(however, contrary to popular physics terminology, it is not “topological”
since it depends on the smooth structure of M). This term is responsible
for the Aharanov-Bohm effect as it arises as the phase factor

exp

{
q

∫
A

(
dx

dt

)
dt

}
.
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Motivation

Motivation II

This phase factor is also important in the case of non-abelian gauge
theories where it appears as the path-ordered exponential

P exp

{
q

∫
A

(
dx

dt

)
dt

}
.

We will construct this more explicitly momentarily. The point is that these
factors and their associated Wilson loops describe non-perturbative effects
in gauge theory such as confinement as discovered by Wilson in 1974.
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Motivation

Motivation III

The analogous Action for strings coupled to an abelian gauge field B was
conceived by Kalb and Ramond in 1974. Let h denote the metric on the
string worldsheet x . Then the Action is

S [x ,B] = −m

∫ √
−det(h)habg (∂ax , ∂bx) dsdt

+ q

∫
B

(
∂x

∂s
,
∂x

∂t

)
dsdt −

∫
M

H ∧ ?H

where H is the electromagnetic field strength 3-form H := dB. In this talk,
we will focus on a non-abelian generalization of the interaction term for
strings and its appropriate exponential

exp

{
q

∫
B

(
∂x

∂s
,
∂x

∂t

)
dsdt

}
in order to make sense of Wilson surfaces, which are analogues of Wilson
loops for particles.
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Groups and 2-groups Groups and parallel transport

Groups are categories I

A group can be thought of as a set with an associative binary operation,
an identity for the operation, and an inverse for each element. Categories
are like groups with partially defined associative binary operations. You
can only multiply elements if their “colors” match:

g2 g1

↓

g2g1

The lines are 1-dimensional “domains” and the bullets are 0-dimensional
“defects.”
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Groups and 2-groups Groups and parallel transport

Groups are categories II

Every color has an identity

e

Groups are examples where all the colors are the same, i.e. all the domains
are indistinguishable. Therefore, groups are examples of categories.
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Groups and 2-groups Groups and parallel transport

Groups describe parallel transport I

The solution to the initial value problem differential equation

dψ(t)

dt
= A(t)ψ(t), ψ(0) ≡ ψ0 ∈ Rn

with A(t) a time-dependent n × n matrix is

ψ(t) = ψ0 +
∞∑
k=1

1

k!

∫ t

0
dtk · · ·

∫ t

0
dt1 T [A(tk) · · ·A(t1)]ψ0

where T stands for time-ordering with earlier times appearing to the right.
This shows up in several contexts such as (a) solving Schrödinger’s
equation with A(t) = −iH(t) for a time-dependent Hamiltonian and ψ a
vector in the space on which H acts and (b) calculating the parallel
transport along a curve in gauge theory, where A is the local vector
potential. This integral goes under many names: Dyson series, Picard
iteration, path/time-ordered exponential, etc.
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Groups and 2-groups Groups and parallel transport

Groups describe parallel transport II

Infinitesimally, one can imagine the solution to this differential equation as
coming from breaking up a curve into infinitesimal paths

x(t)

x(t1)

x(tn+1)

x(ti )

dx

dt

∣∣∣∣
ti

and associating the group elements

exp

{
Aµi
(
x(ti )

)dxµi

dt

∣∣∣
ti

}
∼= 1 + Aµi

(
x(ti )

)dxµi

dt

∣∣∣
ti

at these paths and multiplying those group elements in the order dictated
by the path. By locality, the group elements should be of this form.
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Groups and 2-groups Groups and parallel transport

Groups describe parallel transport III

Keeping the order, the result of multiplying all these elements is

exp

{
Aµn
(
x(tn)

)dxµn

dt

∣∣∣
tn

}
· · · exp

{
Aµ1

(
x(t1)

)dxµ1

dt

∣∣∣
t1

}
.

Expanding out to lowest order (since the paths are infinitesimal) gives(
1 + Aµn

(
x(tn)

)dxµn

dt

∣∣∣
tn

)
· · ·
(

1 + Aµ1

(
x(t1)

)dxµ1

dt

∣∣∣
t1

)
and reorganizing terms results in

1 +
n∑

i=1

Aµi
(
x(ti )

)dxµi

dt

∣∣∣
ti

+
n∑

i≥j≥1

Aµi
(
x(ti )

)
Aµj
(
x(tj)

)dxµi

dt

∣∣∣
ti

dxµj

dt

∣∣∣
tj

+ · · · ,

which is exactly the path-ordered integral we saw before (after taking the
n→∞ limit).
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Groups and 2-groups Groups and parallel transport

Groups describe parallel transport IV

We picture this group element as all the number of ways in which A
interacts with the particle preserving the order of the worldline

1

+

∫
•

Aµ1(t1)dx
µ1

dt

∣∣∣
t1

dt1

+

∫ ∫
•

Aµ2(t2)dx
µ2

dt

∣∣∣
t2 •

Aµ1(t1)dx
µ1

dt

∣∣∣
t1

dt1dt2

+ · · ·
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Groups and 2-groups Groups and parallel transport

Groups do not describe parallel transport along surfaces I

But what if we had a string? We would like to couple a non-abelian
2-form B and attempt a similar procedure

x(s, t)

x(si , tj)

∂x
∂t

∣∣∣
(si ,tj )

∂x
∂s

∣∣∣
(si ,tj )

associating the group elements (again this follows from locality)

exp

{
Bµiµj

(
x(si , tj)

)∂xµi

∂s

∂xµj

∂t

∣∣∣
(si ,tj )

}
to plaquettes.
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Groups and 2-groups Groups and parallel transport

Groups do not describe parallel transport along surfaces II

But then in which order should we multiply these elements?

Even if we chose a consistent way, by changing the parametrization on the
worldsheet, the order would be different. This lead Teitelboim to conclude
that only a U(1) gauge field can couple to the worldsheet. However, there
is a way around this problem using 2-category theory and the introduction
of lower form gauge fields.
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-categories I

2-categories have 2-dimensional (2-d) domains, 1-dimensional (1-d)
defects/domains between 2-d domains, and 0-dimensional (0-d) defects
between the 1-d defects/domains.

g

λ

f
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-categories II

The above depiction is related to the usual presentation of 2-categories via

red green

g

��

f

^^ λ

��

and are called “string diagrams.” 1-d defects can be composed/fused
horizontally (aka “in parallel”)

f g → fg

Every 2-d domain has an identity 1-d defect.
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-categories III

0-d defects can be composed/fused vertically (aka “in series”)

h

µ

g

f

λ

→

h

µ
λ

f

Note that the 1-d defect labelled by g must match. Every 1-d
defect/domain has an identity 0-d defect for the vertical composition.
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-categories IV

0-d defects can be also be composed/fused horizontally (aka “in parallel”)

g

f

λ

k

h

σ →

gk

λσ

fh

Every 2-d domain has an identity 0-d defect (which is the identity 0-d
defect of the identity 1-d defect) for the horizontal composition.
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-categories V

The compositions must satisfy the “interchange law”

g

f

λ

h

µ

k

i

j

σ

τ

↓

→

hk

µτ

gj

λσ

fi

↓

h

f

µ
λ

k

i

τ
σ

→
hk
µτ
λσ

fi
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-Groups and crossed modules I

A 2-group is a 2-category all of whose two-dimensional domains are
identical and all defects are invertible with respect to all compositions.
Crossed modules allow us to be a little more concrete. A crossed module is
a quadruple (H,G , τ, α) of two groups, G and H, group homomorphisms
τ : H → G and α : G → Aut(H), satisfying the two conditions

ατ(h)(h′) = hh′h−1

and
τ(αg (h)) = gτ(h)g−1.

If the groups G and H are Lie groups and the maps τ and α are smooth,
then (H,G , τ, α) is called a Lie crossed module. Before giving concrete
examples, we show how crossed modules give rise to 2-groups.
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-Groups and crossed modules II

1-dimensional defects are labelled by elements g of G . 0-dimensional
defects are labelled by elements h of H. However, the labelling is not
arbitrary and must be of the form

g

h

τ(h)g
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-Groups and crossed modules III

The vertical composition is defined by

g1

h

τ(h)g1

τ(h′)τ(h)g1

h′

→

g1

h′h

τ(h′h)g1
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Groups and 2-groups Two-dimensional algebra via 2-categories

2-Groups and crossed modules IV

The horizontal composition is defined by

g2

τ(h2)g2

h2

g1

τ(h1)g1

h1
→

g2g1

h2αg2(h1)

τ(h2)g2τ(h1)g1

Notice that
τ(h2)g2τ(h1)g1 = τ

(
h2αg2(h1)

)
g2g1.

The interchange law follows from the two identities. Big (but easy to
prove) theorem: every 2-group arises in this way for some crossed module.
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Groups and 2-groups Two-dimensional algebra via 2-categories

Examples of crossed modules I

Remember, a crossed module consists of (H,G , τ, α) with τ : H → G and
α : G → Aut(H).

Let G be any group, H := G , τ := idG , and α is conjugation.

Let H be any group, G := Aut(H), τ(h) is the automorphism defined
by τ(h)(h′) := hh′h−1, and α := idAut(H).

Let N be a normal subgroup of G . Set H := N, τ the inclusion, and α
conjugation.

Let G be a Lie group, τ : H → G a covering space, and α conjugation
by a lift.

Let G := {∗}, the trivial group, H any abelian group, τ the trivial
map, and α the trivial map.
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Groups and 2-groups Two-dimensional algebra via 2-categories

Examples of crossed modules II

Warning: It is not possible for H to be a non-abelian group if G is trivial!
In fact, for an arbitrary crossed module (H,G , τ, α), ker(τ) is always a
central subgroup of H. This is in fact what Teitolboim observed and the
following picture in terms of domains and defects illustrates a cute proof
(red and blue indicate two different elements of H and black indicates the
identity of H).
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Parallel transport for strings Differential data for 2-form gauge fields

Differential data for 2-connections

Now we come back to trying to formulate a consistent way to obtain
non-abelian phase factors via parallel transport along surfaces.

Let (H,G , τ, α) be a Lie crossed module and (h, g, τ , α) the associated Lie
algebra data. The differential cocycle data for a trivial principal 2-bundle
with connection over a smooth manifold M consists of a g-valued 1-form
A ∈ Ω1(M; g)), and a h-valued 2-form B ∈ Ω2(M; h)) satisfying

dA +
1

2
[A,A] = τ(B).
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Parallel transport for strings Infinitesimal surface transport

Infinitesimal surface transport I

Therefore, what we should do is associate to each infinitesimal square
spanned by the two coordinate vectors on our worldsheet the following
group elements

(si , tj)

(si+1, tj)

(si , tj+1)

e A(i+1,j) ∂x
∂t

e
A(i ,

j)
∂x
∂s

e A(i ,j) ∂x∂t
e
A(i
,j+

1) ∂
x
∂s

eB(i ,j) ∂x
∂s

∂x
∂t
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Parallel transport for strings Infinitesimal surface transport

Infinitesimal surface transport II

By the rules of 2-groups
g

h

τ(h)g

the diagram requires that (at least to lowest order)

τ

( h︷ ︸︸ ︷
exp

{
Bµiµj

(
x(si , tj)

)∂xµi

∂s

∂xµj

∂t

∣∣∣
(si ,tj )

})

×

g︷ ︸︸ ︷
exp

{
Aµj (x(si+1, tj))

∂xµj

∂t

∣∣∣
(si+1,tj )

}
exp

{
Aµi (x(si , tj))

∂xµi

∂s

∣∣∣
(si ,tj )

}
= exp

{
Aµi (x(si , tj+1))

∂xµi

∂s

∣∣∣
(si ,tj+1)

}
exp

{
Aµj (x(si , tj))

∂xµj

∂t

∣∣∣
(si ,tj )

}
.
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Parallel transport for strings Infinitesimal surface transport

Infinitesimal surface transport III

But this follows from the standard calculation that (to lowest order) the
holonomy around an infinitesimal loop is unity plus the curvature

exp

{
Aµi (x(si , tj+1))

∂xµi

∂s

∣∣∣
(si ,tj+1)

}
exp

{
Aµj (x(si , tj))

∂xµj
∂t

∣∣∣
(si ,tj )

}
× exp

{
−Aµi (x(si , tj))

∂xµi

∂s

∣∣∣
(si ,tj )

}
exp

{
−Aµj (x(si+1, tj))

∂xµj

∂t

∣∣∣
(si+1,tj )

}
= 1 + Fµiµj

(
x(si , tj)

)∂xµi

∂s

∂xµj

∂t

∣∣∣
(si ,tj )

,

where F is the curvature of A, i.e. F = dA + 1
2 [A,A], and the fact that

τ

(
exp

{
Bµiµj

(
x(si , tj)

)∂xµi

∂s

∂xµj

∂t

∣∣∣
(si ,tj )

})
= 1 + τ

(
Bµiµj

(
x(si , tj)

)∂xµi

∂s

∂xµj

∂t

∣∣∣
(si ,tj )

)
.
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Parallel transport for strings Local surface transport

Local surface transport I

Using our rules and the infinitesimal group element associated to each
plaquette, we can piece together the infinitesimal matrices

t
~~

s ee

t
��

s __

and simplify the picture drawing it on the domain of the worldsheet. But
in order to multiply using our rules from before, we need to “fill in” some
empty slots with identity 0-d defects.
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Parallel transport for strings Local surface transport

Local surface transport II

So let’s do exactly this on the (s, t) domain of the worldsheet

t
��

s __

• (s1, t1)

•(s2, t3)

•(s1, tn+1)

•(sn+1, t1)

•(sn+1, tn+1)

e

e

e

e

e

e

e

e

e

e

e

e e

e ee

eeee

e

e e

e ee

eeee

e

e

e

e

e

e

e

e

e

e

Arthur J. Parzygnat (CUNY Graduate Center and The City College of New York)Two-dimensional algebra and gauge theory for strings CCNY HEP Seminar March 18, 2016March 18, 2016 31 / 64



Parallel transport for strings Local surface transport

Local surface transport III

Filling in the identities allows us to horizontally compose the elements in
the following way
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Parallel transport for strings Local surface transport

Local surface transport IV

We can draw this in a more familiar way by tilting the elements (only the
top half is drawn)

which now makes it easy to see we can first horizontally compose each row
and then vertically compose the results in the remaining column.
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Parallel transport for strings Local surface transport

Local surface transport V

We now need to label the 1-d and 0-d defects appropriately using our
infinitesimal rules. We use the shorthand notation

asij := exp

{
A
(
x(si , tj)

)∂x

∂s

∣∣∣
(si ,tj )

}

atij := exp

{
A
(
x(si , tj)

)∂x

∂t

∣∣∣
(si ,tj )

}
to denote the parallel transport along infinitesimal paths and

bij := exp

{
B
(
x(si , tj)

)∂x

∂s

∂x

∂t

∣∣∣
(si ,tj )

}
to denote the parallel transport along infinitesimal squares. A sum over
components in the coordinates is assumed in each argument of the
exponential. Then, our diagram becomes
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Parallel transport for strings Local surface transport

Local surface transport VI

e

e

e

e

e

e

e

e

e

e

b11

b21

b22

bn1

bn2 bn−1,1

bnn

bij

asij

atij

ati+1,j

asi+1,j+1

e

e

e

e

e

e

e

e

ee

as11

as11

as11

as11

as11

as21

as21

as21

as21

asn−1,1

asn1atn+1,1

atn+1,2

atn+1,n

atn+1,n

atn+1,n

atn+1,n

atn+1,n

a
t

21

a
t

31

a
t
n1

a s
n2

a s
nn

at11as12

as22

at22as23

at32

asn,n+1 atnn
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Parallel transport for strings Local surface transport

Local surface transport VII

Taking the first row and horizontally composing (recall, the rule for
horizontal composition is:

g2

τ(h2)g2

h2

g1

τ(h1)g1

h1 →
g2g1

h2αg2 (h1)

τ(h2)g2τ(h1)g1

)

gives

at65

at65 at64

at64

at63

at63

e e e e

at62

at62

as52

b51

at61

at51

as51 as41

as41 as31

as31

as21

as21

as11

as11

e e e e

The result on the 1-d defects is just the usual group multiplication product
while the result on the 0-d defects is

αat65a
t
64a

t
63a

t
62

(
b51

)
.
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Parallel transport for strings Local surface transport

Local surface transport VIII

Taking the second row and horizontally composing gives

at65

at65 at64

at64

at63

at63

e e e b52

as53

at62

at52

as52 at51

as42 at41

as41

as31

as31

as21

as21

as11

as11

b41 e e e

The result of composing the 0-d defects is

αat65a
t
64a

t
63

(
b52

)
αat65a

t
64a

t
63a

t
62a

s
52

(
b41

)
.

The third row gives

at65

at65 at64

at64

as54

at63

e e b53

at53

as53

as43

at52 as42

at42 as32

at41

at31

as31

as21

as21

as11

as11

b42 b31 e e

= αat65a
t
64

(
b53

)
αat65a

t
64a

t
63a

s
53

(
b42

)
αat65a

t
64a

t
63a

s
53a

t
52a

s
42

(
b31

)
.
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Parallel transport for strings Local surface transport

Local surface transport IX

The rest of the rows give

at65

at65 as55

at64

at54

as54

e b54 b43 b32

as44

at53

at43

as43 at42

as33 at32

as32

as22

at31

at21

as21

as11

as11

b21 e

= αat65

(
b54

)
αat65a

t
64a

s
54

(
b43

)
αat65a

t
64a

s
54a

t
53a

s
43

(
b32

)
αat65a

t
64a

s
54a

t
53a

s
43a

t
42a

s
32

(
b21

)
at65

as56 at55

as55

as45

at54

b55 b44

at44

as44

as34

at43 as33

at33 as23

at32

at22

as22

b33 b22

as12

at21

at11

as11

b11

= b55αat65a
s
55

(
b44

)
αat65a

s
55a

t
54a

s
44

(
b33

)
αat65a

s
55a

t
54a

s
44a

t
43a

s
33

(
b22

)
×αat65a

s
55a

t
54a

s
44a

t
43a

s
33a

t
32a

s
22

(
b11

)
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Parallel transport for strings Local surface transport

Local surface transport X

as56

as56

at55

as46 at45

as45

e b45

as35

at44

b34 b23

at34

as34 at33

as24 at23

as23

as13

at22 as12

at12 at11

at11

b12 e

= αas56

(
b45

)
αas56a

t
55a

s
45

(
b34

)
αas56a

t
55a

s
45a

t
44a

s
34

(
b23

)
αas56a

t
55a

s
45a

t
44a

s
34a

t
33a

s
23

(
b12

)

as56

as56 as46

as46

as36

at45

e e b35

at35

as35

as25

at34 as24

at24 as14

at23 as13

at13 at12

at12

at11

at11

b24 b13 e e

= αas56a
s
46

(
b35

)
αas56a

s
46a

t
45a

s
35

(
b24

)
αas56a

s
46a

t
45a

s
35a

t
34a

s
24

(
b13

)
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Parallel transport for strings Local surface transport

Local surface transport XI

as56

as56 as46

as46

as36

as36

e e e b25

at35

as26 at25

as25 at24

as15

as14

at14 at13

at13

at12

at12

at11

at11

b14 e e e

= αas56a
s
46a

s
36

(
b25

)
αas56a

s
46a

s
36a

t
35a

s
25

(
b14

)

as56

as56 as46

as46

as36

as36

e e e e

as26

as26

as16

b15

at25

at15

as15 at14

at14 at13

at13

at12

at12

at11

at11

e e e e

= αas56a
s
46a

s
36a

s
26

(
b15

)
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Parallel transport for strings Local surface transport

Local surface transport XII

Composing vertically gives a rather big mess

αat
65

at
64

at
63

at
62

(b51)

αat
65

at
64

at
63

(b52)αat
65

at
64

at
63

at
62

as
52

(b41)

αat
65

at
64

(b53)αat
65

at
64

at
63

as
53

(b42)αat
65

at
64

at
63

as
53

at
52

as
42

(b31)

αat
65

(b54)αat
65

at
64

as
54

(b43)αat
65

at
64

as
54

at
53

as
43

(b32)αat
65

at
64

as
54

at
53

as
43

at
42

as
32

(b21)

b55αat
65

as
55

(b44)αat
65

as
55

at
54

as
44

(b33)αat
65

as
55

at
54

as
44

at
43

as
33

(b22)αat
65

as
55

at
54

as
44

at
43

as
33

at
32

as
22

(b11)

αas
56

(b45)αas
56

at
55

as
45

(b34)αas
56

at
55

as
45

at
44

as
34

(b23)αas
56

at
55

as
45

at
44

as
34

at
33

as
23

(b12)

αas
56

as
46

(b35)αas
56

as
46

at
45

as
35

(b24)αas
56

as
46

at
45

as
35

at
34

as
24

(b13)

αas
56

as
46

as
36

(b25)αas
56

as
46

as
36

at
35

as
25

(b14)

αas
56

as
46

as
36

as
26

(b15)

but we can visualize this mess by expanding out each b to lowest order
(since we already know that the a’s give the one-dimensional parallel
transport, we don’t have to expand them out).
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Parallel transport for strings Local surface transport

Local surface transport XIII

The zeroth order term is just the identity. There are 25 terms with a single
B (some of these terms are written underneath the pictures)

αas
56

as
46

as
36

as
26

(B15)

+ +

αas
56

as
46

as
36

at
35

as
25

(B14)

+ +

αas
56

as
46

at
45

as
35

(B24)

+

αas
56

as
46

at
45

as
35

at
34

as
24

(B13)

+ · · ·+ + +

In other words, we calculate the ordinary parallel transport along a
specified path between the point (s, t) = (s6, t6) and another point
(si+1, tj+1) (represented by a blue line) and conjugate each B field at
(si , tj) (represented by a blue square) by that parallel transport. Then we
sum over all points at which B has been specified.
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Parallel transport for strings Local surface transport

Local surface transport XIV

There are
∑24

k=1 k = 24(25)
2 = 600, i.e.

(25
2

)
, terms with two B’s:

· + · + ·

+ · + · + · · ·

+ · + · + ·
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Parallel transport for strings Local surface transport

Local surface transport XV

+ · + · + ·

+ · + · · ·+ · + ·

+ · + · · ·+ · + ·
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Parallel transport for strings Local surface transport

Local surface transport XVI

We should do this sum for all products of B’s ranging from 0 to 25. The
total number of all terms in such an expansion is enormous and is given by

25∑
k=0

(
25

k

)
= 225,

which is ridiculously huge (on the order of Avogadro’s number).
Fortunately, we can see a pattern by rearranging all of these terms.
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Parallel transport for strings Local surface transport

Local surface transport XVII

For example, for terms with two B’s, there are terms with two B’s at
different “heights” such as

·

and terms with B’s at the same height such as

·
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Parallel transport for strings Local surface transport

Local surface transport XVIII

The ratio of terms with two B’s at the same height to the total number of
terms with two B’s is (n = 5 in our picture)

n∑
k=0

k(k − 1)(
n2

2

) =
2

3n
.

Thus, as n→∞, the number of terms for which the B’s are at the same
height is a set of measure zero with respect to all possibilities. A similar
argument applies for terms with k B’s provided that k � n (though I was
too lazy to figure out the explicit formula). Since we will take n→∞ (as
we normally do in calculus), this shows that we only care about terms at
which B is inserted at different heights. This gives the following picture
for the surface-iterated integral.
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Parallel transport for strings Local surface transport

Local surface transport XIX

Let γs,t be the path

t
��

s __

(s, t)(s + 1− t, 1)
γs,t
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Parallel transport for strings Local surface transport

Local surface transport XX

The limit of the result as n→∞ is given by an iterated integral

+

∫
+

∫ ∫
+ · · ·

The surface-ordered integral is depicted schematically as an infinite sum of
terms expressed by placing B at the endpoints of the drawn paths,
conjugating it by parallel transport using A. Then we use an ordinary
integral over the horizontal direction to get a 1-form. Finally we use the
usual path-ordered integral in the vertical direction.
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Parallel transport for strings Local surface transport

Special cases of local surface transport

When G = {∗} and H = U(1) the parallel transport is

exp

{∫
BµνdΣµν

}
and describes the coupling of a 2-form vector potential to the
worldsheet of a charged string. In this case, B is known as a
Kalb-Ramond field.

When H = G , τ = idG , and α is just conjugation, then this
reproduces the non-abelian Stoke’s theorem (see, for instance, work
of Makeenko).

When H is a covering space of G , this (technically a global version of
this) can be used to calculate the flux of magnetic monopoles (see my
paper).
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Parallel transport for strings Functorial properties of parallel transport

1-dimensional parallel transport is a functor I

One can think of (local) parallel transport of a path as a smooth functor

P1(M)
triv−−→ BG

from the category of (thin) paths in a manifold M to the gauge group G
viewed as a one-object category.

γ
→ triv(γ)
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Parallel transport for strings Functorial properties of parallel transport

1-dimensional parallel transport is a functor II

Functoriality just means path composition goes to group multiplication.

γ δ

↓

triv(γ) triv(δ)

A result of Schreiber and Waldorf is that there is an equivalence between
such functors and vector potentials A ∈ Ω1(M; g).
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Parallel transport for strings Functorial properties of parallel transport

2-dimensional parallel transport is a functor I

One can think of (local) parallel transport of a worldsheet as a smooth
functor

P2(M)
triv−−→ B(H,G , τ, α)

from the category of (thin) worldsheets in a manifold M to the crossed
module (H,G , τ, α) viewed as a one-object 2-category. The assignment on
strings and worldlines is the same as before. The assignment on
worldsheets is

Σ

γ δ

ξζ

t

yy

s

bb

→ triv(Σ)

triv(ξ)

triv(γ) triv(δ)

triv(ζ)
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Parallel transport for strings Functorial properties of parallel transport

2-dimensional parallel transport is a functor II

In this case, functoriality means the previous condition for paths and in
addition evolving a string in time twice

Σ

γ δ

ξ

ζ

Ω

β

ω ρ

gives the composition

e

e

tr
iv

(ξ
)

tr
iv

(ξ
)

triv(Ω)

triv(Σ)
triv(ζ)

tr
iv

(ρ
)

tr
iv

(β
)

tr
iv

(β
)

tr
iv

(γ
)

triv(ω)

triv(δ)

result:
triv(Ω)αtriv(β)

(
triv(Σ)

)
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Parallel transport for strings Functorial properties of parallel transport

2-dimensional parallel transport is a functor III

while extending the string in space and evolving results in

Σ

γ δ

ξζ

χ

Π
π

ε

gives the composition

e

e

tr
iv

(ξ
)

tr
iv

(π
)

triv(Π)

triv(Σ)
triv(ζ)

tr
iv

(γ
)

triv(ζ)

triv(δ)

triv(ε)

triv(ε)

triv(χ)

result:
αtriv(ζ)

(
triv(Π)

)
triv(Σ)
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Parallel transport for strings Gauge transformations

Gauge transformations for worldlines I

If A and A′ are two different vector potentials related by an infinitesimal
gauge transformation, then this gauge transformation can be described by
a natural transformation of parallel transport functors

P1(M) BG

triv

%%

triv′

99
g

��

which is an assignment that sends a point y ∈ M to a group element g(y)
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Parallel transport for strings Gauge transformations

Gauge transformations for worldlines II

satisfying the condition that for every path

γ yz

the equality

g(z) triv(γ)

=

triv′(γ) g(y)

holds.
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Parallel transport for strings Gauge transformations

First order gauge transformations for worldsheets I

Two pairs of gauge potentials (A,B) and (A′,B ′) are gauge equivalent if
there exists a pseudo-natural transformation of parallel transport functors

P2(M) BG

triv

%%

triv′

99(g ,h)

��

which is an assignment that sends a point y ∈ M to a group element g(y)
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Parallel transport for strings Gauge transformations

First order gauge transformations for worldsheets II

and sends a path

γ yz

to

h(γ)

g(y)

g(z) triv(γ)

triv′(γ)

Note that, in particular, this says

τ
(
h(γ)

)
triv′(γ)g(y) = g(z)triv(γ).
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Parallel transport for strings Gauge transformations

First order gauge transformations for worldsheets III

This assignment must satisfy two conditions. The first is that to a pair of
composable paths

γ δz
y

x

h(γδ)

g(x)

g(z) triv(γδ)

triv′(γδ)

=

e

e

g(y
)

g(x
)

h(δ)

h(γ)
triv ′(γ)

g(z
)

triv ′(γ)

triv(γ)

triv(δ)

triv(δ)

triv ′(δ)

i.e.
h(γδ) = αtriv′(γ)

(
h(δ)

)
h(γ).

Arthur J. Parzygnat (CUNY Graduate Center and The City College of New York)Two-dimensional algebra and gauge theory for strings CCNY HEP Seminar March 18, 2016March 18, 2016 60 / 64



Parallel transport for strings Gauge transformations

First order gauge transformations for worldsheets IV

The second is that to any worldsheet

Σ

γ δ

ξ
ζ

x

y

z

w

h(ξ)

g(x)

g(w)

h(ζ)

g(z)

triv(Σ)

triv ′(ζ)

triv(ζ)

triv(δ)tr
iv

(γ
)

tr
iv

(ξ
)

tr
iv
′ (ξ

)

=

tr
iv
′ (γ

)

triv′(Σ)

g(z) g(x)

g(y)

h(γ) h(δ)

tr
iv
′ (ξ

)

tr
iv

(γ
)

triv ′(δ)

triv(δ)

triv ′(ζ)
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Parallel transport for strings Gauge transformations

First order gauge transformations for worldsheets IV

where really we mean (by unfolding and placing in necessary identities and
only the necessary 1-d defects have been labelled)

h(ζ)

h(ξ)

triv(Σ)

e

e

e

g(z
)

triv ′(ζ)

= e

e

e

h(δ)

h(γ)

triv′(Σ)

triv ′(γ)

i.e.

αtriv′(ζ)

(
h(ξ)

)
h(ζ)αg(z)

(
triv(Σ)

)
= triv′(Σ)αtriv′(γ)

(
h(δ)

)
h(γ)

or equivalently by our earlier condition

h(ζξ)αg(z)

(
triv(Σ)

)
= triv′(Σ)h(γδ).
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Parallel transport for strings Gauge invariance and global surface transport

So much more to discuss!

Second order gauge transformations

Infinitesimal versions of gauge transformations

Non-trivial 2-bundles and global parallel transport

Gauge invariant observables (Wilson surfaces)

Non-abelian magnetic monopoles

etc...
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Parallel transport for strings Gauge invariance and global surface transport

Thank you + references

Thank you
Additional references:

J. Baez and J. Huerta “An Invitation to Higher Gauge Theory”
arXiv:1003.4485

U. Schreiber and K. Waldorf “Connections on non-abelian Gerbes and
their Holonomy” arXiv:0808.1923

Historical references:

K. G. Wilson “Confinement of quarks” Phys. Rev. D. Vol. 10, No. 8,
(1974) 2445–2459.

M. Kalb and P. Ramond “Classical direct interstring action” Phys.
Rev. D. Vol. 9, No. 8, (1974) 2273–2284

C. Teitelboim “Gauge invariance for extended objects” Phys. Let.
Vol. 167B, No. 1, (1985) 63–68
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