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Motivation for calculus

Given a fence of a fixed perimeter,

what is the maximum possible area

inscribed by that fence?

Amol drives on average 45 mph from NYC to Boston and gets a

speeding ticket on I-91, where the speed limit is 65 mph. How is this

possible?

A very large class of students

takes an exam and their normal-

ized grade distribution is shown.

What is the probability that a stu-

dent chosen at random obtained a

grade between 85 and 95?

If [0, 100] 3 x 7! p(x) describes the probability density associated

with a grade of x, then the integral
R 95
85 p(x) dx gives this probability.

`

m

h

A pendulum of length ` and massm is re-

leased from a fixed height h. What is the

period of oscillation of the pendulum?

Assume air resistance, friction, and other

forces are absent. In particular, does the

period depend on the mass m, the initial

height h, or the length `?
If the initial height is h, then the initial angle is ✓0 = arccos

�
h
`

�

with ✓0 measured clockwise from the vertical axis. The period is

given by the integral T = 4

q
`
2g

R ✓0
0

d✓p
cos(✓)�cos(✓0)

. [Reference: Wiki

Pendulum (mathematics)]

What is the area of the com-

mon region shared by two ellipses

whose semi-major axes are at 90
�

from each other? How about

three ellipses at 60
�
?

• What is the center of mass of a rigid body whose

mass distribution is known?

What is the shape of a hanging rope whose two ends are fixed when it

is exposed to a constant gravitational field? Assume the rope cannot

stretch.

•
(x1, y1)

•
(x2, y2)

The general curve y is of the form y(x) = a cosh
�
x
a

�
and the relation-

ship between a and the length ` and the horizontal and vertical dis-

tances x2�x1 and y2�y1 is given by `2�(y2�y1)2 = 4a2 sinh2
�
x2�x1

2a

�
.

[Reference: Michael Fowler (UVa)]

What is the distance covered

by a car if we know the speed

at all instances of time and the

duration of the trip?

time

s
p
e
e
d

Functions

If A is a set, the notation a 2 A denotes “a is an element of A.” If

A and B are sets, A ✓ B denotes “A is a subset of B” and means

every element of A is an element of B. b /2 A means b is not an

element of A. B \ A := {b 2 B : b /2 A}, which reads “B \ A
is the set of elements b in B such that b is not an element of A.”
A ⇥ B := {(a, b) : a 2 A, b 2 B} is the set of ordered pairs of

elements in A and B. A ⇥ B is called the cartesian product of A and

B. [Reference: Herb Gross I.2. Functions]

N := {1, 2, 3, 4, . . . } is the set of natural numbers,
Z := {. . . ,�3,�2,�1, 01, 2, 3, . . . } is the set of integers,
Q := {p/q : p, q 2 Z} is the set of rational numbers, and
R is the set of all real numbers.
Let a, b 2 R. The following intervals appear often:

[a, b] := {r 2 R : a  r  b}, [a, b) := {r 2 R : a  r < b}
(a, b] := {r 2 R : a < r  b}, (a, b) := {r 2 R : a < r < b}.
It is an unfortunate face that the notation (a, b) is used to denote

both the ordered pair and the open interval. Context should clarify.

Let A and B be sets. A function f from A to B, written f : A ! B,

A
f�! B, or B

f � A, is an assignment sending each element a 2 A
to some element f(a) 2 B. A is called the source (domain) of f
and B is called the target (codomain) of f. A 3 a 7! f(a) 2 B is

used to denote the assignment of f on elements of A. f(a) is called

the image of a under f. The collection of all images of elements,

image(f) := {f(a) : a 2 A}, is called the image of f and is a subset

of B. The image of f is sometimes denoted by f(A). The latter

notation is abusive because it does not make sense to apply f to A,
which may or may not be an element of A.

A vending machine has several buttons on it such as

X := {A1, A2, A3, B1, B2, B3} and each button outputs

a particular snack (upon payment and selection). Let

Y be some fixed set of popular snacks such as Y =

{Doritos, Snickers, Skittles,Cheetos,M&M’s,Kit Kat,Milky Way}. A

properly working vending machine defines a function f : X ! Y. For
example,

A1 A2 A3 B1 B2 B3

Doritos

Snickers

Skittles

Cheetos

M&M’s

Kit Kat

Milky Way

q

⇠⇠

M

⌃⌃

q

⇠⇠

j

��

q

⇠⇠

M

⌃⌃

Notice that not all of the snacks were used. It is permissible for a

function to not “hit” all of the elements in the target. Furthermore, it

is possible for a snack to be “hit” more than once. The reason might

be that a particular snack is so popular that it has two rows stocked.

R \ {0} ! R defined by R \ {0} 3 x 7! 1
x defines a function. Notice

that this example of a function is quite di↵erent from the previous

one in that we have an algebraic formula that describes the function.

We can break up parts of any set into subsets and define functions on

these subsets to define a function on the whole. Such functions are

called piecewise functions. An example of a piecewise function is the

absolute value function | · | : R! R given by

R 3 x 7!
(
x if x � 0

�x if x < 0

Let A be any set and define idA : A ! A to be the function sending

a 2 A to a. This function is called the identity function on A.

R ! R given by R 3 x 7! 1
x does not define a function because the

assignment is not defined for x = 0.

N! N given by N 3 x 7! 1
x also does not define a function because

1
x

is not a natural number in general.

https://en.wikipedia.org/wiki/Pendulum_(mathematics)
https://en.wikipedia.org/wiki/Pendulum_(mathematics)
http://galileoandeinstein.physics.virginia.edu/7010/CM_02_CalculusVariations.html
https://youtu.be/dNyLGmiYQY0


Let A
f�! B be a function. The graph of f is the subset of A⇥B given

by �(f) := {(a, f(a)) : a 2 A}. � is the Greek letter “Gamma.”

For the vending machine function from above, the

graph is the list of elements in X ⇥ Y given by

{(A1, Snickers), (A2, Snickers), (A3,Cheetos), (B1,M&M’s), . . . }.

The graph of R \ {0} 3 x 7! 1
x can be vi-

sualized by drawing two coordinate axes by

viewing the first element x in the ordered pair�
x, 1

x

�
along the horizontal axis and viewing

the second element along the vertical axis.

The point (0, 0) has been circled to indicate

that the function is not defined at 0 2 R. We

often conflate a function with its graph but

please be aware that they are di↵erent.

We often use the horizontal axis to indicate the source (domain) of the

function and the vertical axis for the target (codomain).

Let A,B, and C be sets and let A
f�! B and B

g�! C be two functions.

The composition of f followed by g, written as g � f, is the function

A
g�f��! C defined by A 3 a 7! g(f(a)). You might wonder why the

composition is written as g � f instead of f � g. The reason is because

for any function h : X ! Y when we plug in an element x 2 X to

the function h, we write h(x) instead of (x)h—we place the input x
on the right. For this reason, it is preferable to write the arrows from

right to left, i.e. write Y
h � X so that Y 3 h(x)  [ x 2 X. Another

reason is for composition. The composition C
g � B

f � A is C
g�f �� A.

Notice that when we write our arrows from right to left, composition

is just concatenation of symbols.

Let f : R ! R be the function defined by R 3 x 7! f(x) := x2

and let g : R ! R be given by R 3 y 7! g(y) := cos(y). Both the

compositions g � f and f � g are defined, but they are di↵erent.

These two functions are given by R 3 x 7! g(f(x)) = cos(x2
) and

R 3 y 7! f(g(y)) = cos
2
(y), respectively.

A function A
f�! B is invertible (or “reversible” in English) i↵ there

exists a function A
g � B such that f � g = idB and g � f = idA.

Due to this and the fact that if such a g exists, it is unique, we often

denote g by g = f�1. f�1
is called the inverse of f. The meaning

of an invertible function is more easily understood if f is thought

of as an operation. f is invertible means there is another operation

that can undo f, and this means that there is an operation g such

that applying f and then g gets you back to where you started (and

similarly if you apply g first and then f). It is a theorem that a

function f is invertible if and only if it is one-to-one and onto. Recall,

a function A
f�! B is onto i↵ for every b 2 B there exists an a 2 A

such that f(a) = b and f is one-to-one i↵ f(a1) = f(a2) implies

a1 = a2. [Reference: Herb Gross I.3. Inverse Functions].

The function R 3 x
f7�! x3

is invertible and its

inverse is R 3 x
f�1

7��! x1/3, the cube root of x.
Notice that x is a variable and it is used for two

di↵erent functions. We could have denoted it

by anything else. Also notice that the graph of

the inverse function f�1
is the reflection of the

graph of f through the graph of the identity

function.

ff�1

The function R 3 x 7! x2
sin(200x) 2 R is

surjective but not invertible because it is not

one-to-one (injective). The function R 3 x 7!
1
3e

x 2 R is one-to-one (injective) but not in-

vertible because it is not onto. However, the

function R 3 x 7! 1
3e

x 2 (0,1) is invertible

(because it is onto its codomain).

Exercises
Exercise 1. Fix a positive number r and a pos-

itive integer n � 3. Find the area of a regular

n-gon whose distance from the center to any one

of its vertices is r. For example, for n = 3, the reg-
ular 3-gon is an equilateral triangle and its area

is
3
p
3

4 r2. For n = 4, the shape is a square and its

area is 2r2. What do you notice as n increases?

r

Exercise 2. Is the absolute value function | · | : R ! R onto?

Is it one-to-one? Is it invertible? How about the absolute value

function restricted to the domain and codomain given by [0,1), i.e.
| · | : [0,1)! [0,1)?

Exercise 3. What is the largest subset A ✓ R such that the function

A 3 x 7! 1
1�x2 is well-defined?

Exercise 4. What is the image of R 3 x 7! x+5? What is the inverse

of this function? Be sure to identify the source of the inverse as well

as the target. How about for the function R 3 x 7! 5x?

Exercise 5. For which natural numbers n 2 N is the function

R 3 x
pn7�! xn 2 R invertible? For these values of n, find the inverse

of pn. For the values m 2 N for which pm is not invertible, explain

why. For example, is pm not one-to-one? Is pm not onto? Sketch the

graph of pm for various values of m on the domain [�1, 1]. What do

you notice happens as m increases? Try to sketch a graph of the limit

of these functions f := lim
m!1

pm as m increases on the domain [�1, 1].

Exercise 6. Using the notation from the previous exercise, let m 2 N
be a value for which pm is not invertible. Let qm : [0,1)! [0,1) be

defined by the same formula as pm (but with its domain and codomain

slightly alterred). Is qm invertible now? Explain.

Exercise 7. Let C
f � B and B

g � A be invertible functions with

inverses given by C
f�1

��! B and B
g�1

��! A, respectively. Is the compo-

sition C
f�g �� A invertible? If so, find the inverse of f � g. If not, find

an example of two functions f and g that are both invertible but f � g
is not invertible (such an example is called a counter example because

it would provide an example of something contradicting the claim).

Exercise 8. Let f : R ! R be an invertible function. Explain why

the graph of f�1
is the reflection of the graph of f through the graph

of the identity function (this is the line {(x, x) : x 2 R} ✓ R ⇥ R).
Your explanation should be independent of the function f you choose!

Exercise 9. Let D
f � C

g � B
h � A be a triple of composable func-

tions between sets. The composition, as defined in these notes, has

only been defined for a pair of functions. Therefore, one can first form

the composition D
f�g �� B

h � A and then D
(f�g)�h ����� A to obtain a

function from A to D. Another option is to first form the composition

D
f � C

g�h �� A and then D
f�(g�h) ����� A to get another, a-priori di↵er-

ent, function from A to D. Are these two functions the same, i.e. does

f � (g � h) = (f � g) � h for all triples of composable functions? When

this is true, the composition is said to be associative.

Exercise 10. Prove that
Pn

k=0 x
k
=

1�xn+1

1�x for all x 2 R\{1}. [Hint:

compute (1+x+x2
+· · ·+xn

)(1�x).] What’s wrong with this formula

when x = 1?

Exercise 11. Let a, b, c 2 R with a 6= 0. Let f : R! R be the function

defined by R 3 x 7! ax2
+ bx + c. Find the largest subsets A,B ✓ R

such that the functions g :
�
�1,� b

2a

�
! A and h :

�
� b

2a ,1
�
! B

defined by g(x) := f(x) and h(x) := f(x) on their respective domains

are invertible. Find g�1
and h�1. [Hint: � b

2a is the inflection point

for the function f—plot the case a = 1, b = �2, c = 1.]

https://youtu.be/elputTS7tAA
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Sequences

A sequence of real numbers is a function N ! R. More generally, if
A is any set, a sequence in A is a function B ! A where B ✓ N is a
subset of natural numbers that is not finite. [Reference: Herb Gross
VII.1 Many Versus Infinite]

For any natural number n � 3 the area of a regular n-sided polygon
whose distance from the center to any vertex is r 2 (0,1) is given by

an := nr2

2 sin
�
2⇡
n

�
. Then N \ {1, 2} 3 n 7! an := nr2

2 sin
�
2⇡
n

�
defines a

sequence of real numbers. When r is a specified value, such as r = 1,
we can plot the graph of (a part of) this sequence.

•

3

•

4

•

5

•

6

•

7

•

8

•

9

•

10

1

2

3

2.37

2.60

2.74

2.83

2.90

2.94

These numbers seem to tend to a particular value. Can you guess
what it is? [Hint: compute a1000.]

Let x 2 R. Then N 3 n 7! xn is a sequence of real numbers. What is
the graph of this sequence when x > 1? What happens when x = 1?
What happens when x 2 (0, 1)?

A special type of sequence occurs when summing numbers. Fix x 2 R.
In an earlier exercise, it was claimed that

Pn
k=0 x

k = 1�xn

1�x . This gives

a number for each n 2 N. In other words, N 3 n 7!
Pn

k=0 x
k defines a

sequence. Such a sequence of sums of numbers is called a partial sum.
The limit of a partial sum as n tends to infinity is called an infinite
series, something you will learn more about in the second semester of
calculus. This particular series is called the geometric series.

The definition of a sequence that tends to a limit is as follows. A
sequence N 3 n 7! an 2 R converges to a number, a 2 R, i↵ for any
real number ✏ > 0, there exists an N 2 N such that |a � an| < ✏
for all n � N. The number a is called the limit of the sequence and
is denoted by a = lim

n!1
an. The ✏ is a measure our precision. This

definition says that eventually the terms in the sequence are so close
to a particular number that they are at most within an ✏-distance
from this number. A sequence that converges to some real number
is said to be convergent and a sequence that does not converge to
any real number is said to be a divergent sequence. Note that if a
sequence converges, the number it converges to is unique.

The sequence N 3 n 7! xn is convergent if x 2 (�1, 1]. Furthermore,
it converges to 0 when x 2 (�1, 1) and converges to 1 when x = 1.

Sketching out an idea for a proof. Fix ✏ > 0. The goal is to show there
exists an N 2 N such that |xn|  ✏ for all n � N. This is automatically
true for x = 0 for all n � 1. Therefore, suppose that x 6= 0. The desired
inequality is equivalent to |x|n  ✏. Taking the logarithm (base 10, say)
gives n log(|x|)  log(✏). Since |x| < 10, log(|x|) is negative so dividing

by it reverses the inequality to n � log(✏)
log(|x|) = log|x|(✏), the last equality

holding since x 6= 0. Therefore, pick N to be any integer greater than
log|x|(✏). ⌅
Proof. Fix ✏ > 0 and suppose that x 6= 0 (the case x = 0 is true
since |x|n = 0 < ✏ for all n � 1). Set N to be any integer such that
N > log|x|(✏). Then |xn| = |x|n  |x|log|x|(✏) = ✏ for all n � N. ⌅
To see how big N can be, consider the special case where x = 1/2 and
✏ = 1/1000. Then log1/2(1/1000) ⇡ 9.97 so that N = 10 works.

The algebraic limit theorem for sequences is useful when proving that
certain sequences converge.

Theorem 1. Let a, b : N ! R be two sequences (the value of a at n
is denoted by an instead of a(n)). Then

(a) lim
n!1

(can) = x lim
n!1

an for all c 2 R,

(b) lim
n!1

(an + bn) = lim
n!1

an + lim
n!1

bn,

(c) lim
n!1

(anbn) =
⇣
lim

n!1
an

⌘⇣
lim
n!1

bn
⌘
, and

(d) lim
n!1

✓
an
bn

◆
=

lim
n!1

an

lim
n!1

bn
, provided that lim

n!1
bn 6= 0.

If bn = 0 for some n in part (d), the meaning of an
bn

is meant only for
su�ciently large n, where bn 6= 0.

Suppose that x 2 (�1, 1). Then lim
n!1

nX

k=0

xk = lim
n!1

1� xn

1� x
=

1

1� x
lim

n!1
(1 � xn) =

1

1� x

⇣
1� lim

n!1
xn

⌘
=

1

1� x
by the previous

observation, part (a), and part (b) of the algebraic limit theorem.

A sequence a : N ! R is bounded if there exists a real number M > 0
such that |an|  M for all n 2 N A sequence a : N ! R is
non-decreasing if an+1 � an for all n 2 N and non-increasing if
an+1  an for all n 2 N. A sequence a : N ! R is monotone if it is
either non-decreasing or non-increasing. The monotone-convergence
theorem for sequences is incredibly helpful in identifying convergent
sequences.
Theorem 2. If a sequence a : N ! R is monotone and bounded, then
it converges.

The sequence N 3 n 7!
Pn

k=0
1
k! converges (here, k! := 1 · 2 · 3 · · · k)

to a positive number e called Euler’s constant.

Proof.
Pn

k=0
1
k! = 1 + 1

1 + 1
1·2 + 1

1·2·3 + 1
1·2·3·4 + · · ·+ 1

1·2····n
< 1 + 1

20 + 1
21 + 1

22 + 1
23 + · · ·+ 1

2n�1

< 1 +
P1

k=0

�
1
2

�k
since

Pn
k=0

�
1
2

�k
<

P1
k=0

�
1
2

�k

= 1 + 2 since this is the value of the geometric series
= 3 showing that the sequence is bounded. By the monotone conver-
gence theorem, N 3 n 7!

Pn
k=0

1
k! converges. ⌅

Limits of functions
The limit of a sequence N ! R is obtained by observing what happens
to an infinite ordered list of numbers (x1, x2, x3, x4, . . . ) as you
progress forward in this list (the numbers xk need not increase or
decrease as k increases!). The limit of a sequence is a number that
the sequence tends to. The limit of a function is similar, but not quite
the same. First, the limit of a function f : R ! R is obtained at every
point in its domain so saying “the limit of f” alone is meaningless.
Instead, one must say “the limit of f(x) as x approaches c” or “the
limit of f at c,” where c is in the domain of f (we will assume the
domain always contains an open interval of points around c). Second,
the limit can be defined in more than one way. One can approach
a from above (often called “the right”) or from below (often called
“the left”). If the two limits agree, then the limit can be defined
unambiguously. [Reference: Herb Gross I.4. Derivatives and Limits]

Let a, b, c 2 R with a < c < b and let f : (a, b) ! R (or
f : (a, c) [ (c, b) ! R). L is said to be the limit of f(x) as x
approaches c, written lim

x!c
f(x) = L, i↵ for any ✏ > 0, there exists a

� > 0 such that 0 < |x� c| < � implies |f(x)� L| < ✏. L is called the
functional limit of f as x approaches c. One can also define limits from
below (the left) lim

x%c
f(x) = L, and above (the right) lim

x&c
f(x) = L,

by using “c � � < x < c implies |f(x) � L| < ✏” and “c < x < c + �
implies |f(x) � L| < ✏,” respectively. Warning: The limit of f at c
is independent of the value of f at c, even if it is defined.

https://youtu.be/iWphmEIO-1E
https://youtu.be/iWphmEIO-1E
https://www.youtube.com/watch?v=zKtYCGbCfSc#t=16m35s
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Rather than memorizing the defini-
tion of the limit of a function as its
input variable approaches a number
in the domain of that function, a vi-
sualization in terms of the graph of
the function is helpful. In fact, it is
helpful to visualize computations of
limits by using graphs. Notice that
the limit of a function is independent
of whether or not that function is de-
fined at the limiting point.

The limit of f at c is also independent of the value of the function away
from a neighborhood of c.When we discuss continuity of a function, we
will see a relationship between the limit and the value of the function.

Let f : R ! R be the function defined by

R 3 x 7!
(
4 if x = 2
2x2�5x+2

x�2 otherwise
.

Then f(x) = 2x2�5x+2
x�2 = (2x�1)(x�2)

x�2 =
2x � 1 for all x 2 R \ {2}. Hence,
lim
x!2

f(x) = 2(2) � 1 = 3. Notice that

f(2) 6= lim
x!2

f(x) in this example. But

why is lim
x!2

(2x � 1) = 3? Fix ✏ > 0. The

goal is to find a � > 0 such that

3� ✏

3 + ✏

2� � 2 + �

1 2 3
-1

1

2

3

4

5

0 < |x � 2| < � implies |(2x � 1) � 3| < ✏. The latter inequality is
equivalent to �✏ < 2x� 4 < ✏. Adding 4 to all parts of this inequality
gives 4 � ✏ < 2x < 4 + ✏. Dividing by 2 gives 2 + ✏

2 < x < 2 + ✏
2 .

Hence, we can set � := ✏
2 . In this case, the distance to the left and

to the right of 2 are the same. More generally, one must choose the
smaller of the two widths. [Reference: Herb Gross I.4. Derivatives
and Limits—understand his example!]

Just as there was an algebraic limit theorem for limits of sequences,
there is an algebraic limit theorem for functional limits. [Reference:
Herb Gross I.5. A More Rigorous Approach to Limits]

Theorem 3. Let a, b, c 2 R with a < c < b and let f, g : (a, b) ! R.
Furthermore, suppose that lim

x!c
f(x) = L and lim

x!c
g(x) = M. Then the

following facts hold.

(a) lim
x!c

⇥
(kf)(x)

⇤
= kL for all k 2 R.

(b) lim
x!c

⇥
(f + g)(x)

⇤
= L+M.

(c) lim
x!c

⇥
(fg)(x)

⇤
= LM.

(d) Suppose g is nonzero in a neighborhood of c. Then

lim
x!c

✓
f

g

◆
(x)

�
=

L

M
, provided that M 6= 0.

[Herb Gross gives wonderful intuition behind assumptions for theorems
and their proofs at 27:05 of I.5.]

Theorem 4. Let a, b, c 2 R with a < c < b and let f, g, h : (a, b) ! R
be functions satisfying f(x)  g(x)  h(x) for all x 2 (a, c) [ (c, b). If
lim
x!c

f(x) = lim
x!c

h(x) =: v, then lim
x!c

g(x) = v.

This is called the squeezing principle. Exercise 10 explores a useful
application of this theorem.

One can also compute limits “at infinity” such as

lim
x!1

✓
8x2 � 2x+ 1

(2x+ 2)2

◆
= lim

x!1

✓
8� 2/x+ 1/x2

4 + 8/x+ 4/x2

◆
= 2. In this

case, 2 is called a horizontal asymptote. As another example,
lim
x!1

arctan(x) = 1 while lim
x!�1

arctan(x) = �1. A vertical asymptote

occurs when a function becomes unbounded on a finite interval. For

example, lim
x%1

1

1� x
= 1 while lim

x&1

1

1� x
= �1.

Exercises
Exercise 1. Graph the sequences below and verify the claims.
i. N 3 n 7! xn is convergent if and only if x 2 (�1, 1]. Furthermore,

it converges to 0 when x 2 (�1, 1) and converges to 1 when x = 1.
In particular, the sequence N 3 n 7! (�1)n is divergent.

ii. N 3 n 7! sin(n) is divergent.

iii. N 3 n 7! 1p
n
converges to 0.

iv. N 3 n 7! sin
�
1
n

�
converges to 0.

v. N 3 n 7! n sin
�
1
n

�
converges to 1 (then use this to prove

lim
n!1

✓
nr2

2
sin

✓
2⇡

n

◆◆
= ⇡).

Exercise 2. Fix c 2 R and s, r > 0. Let
f : R ! R be the function

R 3 x 7!
(
sx if x  c

rx+ c(s� r) if x > c c

sc

Fix ✏ > 0. Find � > 0 such that 0 < |x� c| < � implies |f(x)� sc| < ✏.
Include a graph and visualization of ✏ and � with your work.

Exercise 3. Using the ✏, � definition of the limit, prove lim
x!⇡

2

cos(x) =

0. To do this, first fix ✏ > 0. Then write down what needs to be shown,
namely, there exists a � such that what? Using the definition of the
absolute value and the required inequality, derive an expression sim-
ilar to your ✏-inequality. Finally, compute �. Draw an accompanying
diagram to help you.

Exercise 4. Fix a, c 2 R. Using the ✏, � definition of the limit, prove
lim
x!c

a = a and prove lim
x!c

x = c.

Exercise 5. Using the ✏, � definition of the limit, prove lim
x!1

1

x
= 1.

Exercise 6. Using the algebraic limit theorem for functional limits
and the previous exercise, prove the following limits are valid.

i. lim
x!1

1

x
= 1. ii. lim

x!2
x3 = 8. iii. lim

x!1

3x2 � 4x+ 1

x4 + 1
= 0.

Exercise 7. If possible, give examples of functions f, g : R ! R
and a point c 2 R such that lim

x!c
f(x) = P, lim

x!c
g(x) = Q, and

lim
x!c

�
f(x)g(x)

�
= R, where P,Q,R 2 {exists, does not exist}. If it

is not possible for a given choice of P,Q, and R, explain why. [Hint:
There are four di↵erent possibilities (excluding symmetry by replacing
f $ g).] Do the same for f + g.

Exercise 8. Let f, g : R ! R be functions and a 2 R with lim
x!a

f(x) =

b and lim
y!b

g(y) = c. Is it true that lim
x!a

�
g(f(x))

�
= c? Explain.

Exercise 9. Evaluate the following limits.

i. lim
x%2

|x� 2|
x� 2

, lim
x&2

|x� 2|
x� 2

, and lim
x!2

|x� 2|
x� 2

.

ii. lim
x!0

p
1 + x�

p
1� x

x
.

iii. lim
x%3

✓
1

x� 3
� 1

|x� 3|

◆
and lim

x&3

✓
1

x� 3
� 1

|x� 3|

◆
.

iv. lim
x!1

✓
(x+ 7)1/3 + 2

x+ 1

◆
.

v. lim
x!3

✓
x� 3

2x2 � 7x+ 3

◆
.

vi. lim
x!1

1 + sin(x) + |x|
x

and lim
x!�1

1 + sin(x) + |x|
x

.

Exercise 10. Using the squeezing principle, prove lim
x!0

sin(x)

x
= 1.

Hint: use the inequality 0 < cos(x) < sin(x)
x < 1

cos(x) valid for all

x 2
�
�⇡

2 , 0
�
[
�
0, ⇡

2

�
.

https://www.youtube.com/watch?v=zKtYCGbCfSc#t=30m14s
https://www.youtube.com/watch?v=zKtYCGbCfSc#t=30m14s
https://youtu.be/9tYUmwvLyIA
https://www.youtube.com/watch?v=9tYUmwvLyIA#t=27m05s
https://www.youtube.com/watch?v=9tYUmwvLyIA#t=27m05s
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Continuity
One of the main assumptions about calculus, as formulated by New-
ton, Leibniz, and others, is that there are quantities that one can
break down into smaller pieces indefinitely, i.e. infinitesimally.
Whether this is actually possible in our word has been debated over
millennia. Based on our understanding of quantum mechanics, time,
and space, this seems like an invalid assumption. Nevertheless, it
holds to a good enough accuracy for many practical purposes.

Let a, b, c 2 R with a < c < b and let f : (a, b) ! R be a function.
f is continuous at c i↵ for every ✏ > 0, there exists a � > 0 such
that f(x) 2

�
f(c) � ✏, f(c) + ✏

�
for all x 2 (c � �, c + �) \ (a, b), i.e.

i↵ f(c) = lim
x!c

f(x). f is discontinuous at c i↵ f is not continuous at

c. f is continuous on (a, b) i↵ f is continuous at c for all c 2 (a, b).
[Reference: Herb Gross II.6 Continuity]

A real polynomial is a function p : R ! R of the form
R 3 x 7! p(x) = a0+a1x+a2x

2+ · · ·+amx
m
, where a0, a1, a2, . . . , am

are real numbers and where m 2 N. The largest m for which the
coe�cient in front of x

m is not zero is called the degree of the
polynomial. A degree zero polynomial is a constant, a degree one
polynomial is a linear function, and a degree two polynomial is a
quadratic function. For example, R 3 x 7! p(x) = 5x4 � 3x3 + 2x� 4
is a degree 4 polynomial. As another example, and to set some
notation, the polynomial pm will denote R 3 x 7! pm(x) := x

m and is
called the standard homogeneous degree m polynomial. The roots of a
polynomial p are the set of numbers R(p) := {z 2 R : p(z) = 0}.

x

1
x2�1

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3 A rational function r is the ratio
(aka quotient) of two polynomi-
als, i.e. there exist polynomials
p and q such that the domain of
r is R \ R(q) and r(x) = p(x)

q(x)

for all x 2 R \ R(q). For ex-
ample, r(x) = 1

x2�1 defines a
rational function r and its do-
main is R\{�1, 1} = (�1,�1)[
(�1, 1) [ (1,1).

Other common functions include trigonometric functions such as cos
and sin, the exponential function exp, and the logarithm log . Most
common functions are compositions of all of the previous ones. For
example, the formula x 7! e

�x2

is obtained from the composition

of the functions x
�p27��! �x

2 exp7��! e
�x2

. As another more compli-
cated example, the formula x 7! cot(2⇡x) is the composition R \ Z 3
x

⇡p17��! ⇡x
(cos,sin)7�����!

�
cos(⇡x), sin(⇡x)

� divide7����! cos(⇡x)
sin(⇡x) = cot(⇡x). Here,

(cos, sin) denotes the function whose domain is R and whose codomain
is R⇥ R and whose value at x 2 R is (cos(x), sin(x)).

Theorem 1. Polynomials, rational functions, trigonometric func-
tions, root functions, exponentials, and logarithms are continuous on
their domain of definition.

The floor function b · c : R ! R
is defined by R 3 x 7! bxc is the
largest integer n such that n  x.

R 3 x
b · c7��!

+1X

n=�1
⇥
�
[n, n+1)

�
(x),

where

⇥
�
[n, n+1)

�
(x) :=

(
n if x 2 [n, n+ 1)

0 otherwise
.

b · c is discontinuous on Z ✓ R

x

bxc

�2 �1 1 2

�2

�1

1

2

��

�

�

�

•

••

•

•

•

and is continuous everywhere else, i.e. b · c is continuous on R \ Z.

Theorem 2. Let f be a function continuous at b 2 R and let
g be a function with lim

x!a
g(x) = b, then lim

x!a
f(g(x)) = f(b), i.e.

lim
x!a

f(g(x)) = f

⇣
lim
x!a

g(x)
⌘
.

This is one of many theorems in calculus where the order of certain
operations does not matter. Here the operations are limits and ap-
plying functions. Note, however, that the assumptions are important.

Let f, g : R ! R be defined by R 3 x 7!
p

|x| and

R 3 x 7! g(x) :=

(
1 if x = 0

x
2 otherwise

. Then lim
x!0

g(x) = 0 and f

is continuous everywhere. The composition of g followed by f is given

by R 3 x 7! f(g(x)) =

(
1 if x = 0

|x| otherwise
. Hence, lim

x!0
f(g(x)) = 0 and

f

⇣
lim
x!0

g(x)
⌘
= f(0) = 0. This example shows that it is not necessary

for g to be continuous at a. What is required, however, is that it must
have a well-defined limit at a.

Theorem 3. If g is continuous at c and f is continuous at g(c), then
f � g is continuous at c.

We can use this theorem to prove that functions such as the ones given
before Theorem 1 are continuous (after we have proven that the basic
functions are continuous). For example, if we show exp is continuous
and any polynomial p is continuous, then exp �p ⌘ e

p is continuous.

The largest subset A ✓ R for which A 3 x 7! ln
�
1 + cos(x)

�
is con-

tinuous is A =
S

n2Z
�
(2n� 1)⇡, (2n+ 1)⇡

�
.

Theorem 4. Let a, b 2 R with a < b and let f : [a, b] ! R be a
continuous function. Then for any L satisfying either f(a) < L < f(b)
or f(a) > L > f(b), there exists a c 2 (a, b) with f(c) = L.

This is called the Intermediate Value Theorem (IVT) and can be used
to prove that continuous functions must take on certain values.

The polynomial p : R 3 x 7! x
4 + 3x3 � 3x2 � 7x+ 3 has at least four

(real) roots.

Proof. Note that p(�4), p(0), p(2) > 0 and p(�3), p(1) < 0. Since p is
continuous by Theorem 1, the IVT applies and there are roots in the
intervals (�4,�3), (�3, 0), (0, 1), and (1, 2). ⌅
There exists a z 2 R such that arctan(z) = 1� z.

Proof. Consider the function f : R 3 x 7! arctan(x) � 1 + x. f is
continuous on its domain and f(0) = �1 < 0 while f(1) = ⇡

4 > 0. By
the IVT, there exists a z 2 (0, 1) such that arctan(z)� 1 + z = 0. ⌅

Rates of change and derivatives
When dropping a bowling ball o↵ of
a medium-sized cli↵, the vertical po-
sition h (in meters) of the ball as
a function of time t (in seconds) is
given roughly by h(t) = �9.8t2 +H,

whereH is the initial height at which
the ball is dropped. The ball appears
to move slowly initially and it picks
up speed the farther it falls from the
top of the cli↵. How fast is it going
after t seconds?

t

h

0 1 2 3
In fact, what do we mean by “how fast?” Do we mean the average
speed of the ball? This would not distinguish the earlier slower
speed or the later faster speed. What we are looking for is some
average speed over a small interval of time, such as [t0, t1] for some
t0, t1 2 R with t1 > t0. The average velocity over this time period is

defined to be h(t1)�h(t0)
t1�t0

. As this interval gets smaller, we expect a
better approximation to the instantaneous velocity, which is defined
as the limit of average velocities. More precisely, the (instantaneous)

velocity at t 2 R is given by v(t) := lim
✏!0

h(t+ ✏)� h(t� ✏)

2✏
if it exists.

https://youtu.be/y4EcXTVqFb4


Setting g := 9.81, the limit of this quotient is given by

lim
✏!0

h(t+ ✏)� h(t� ✏)

2✏
= lim

✏!0

�g(t+ ✏)2 +H + g(t� ✏)2 �H

2✏
=

lim
✏!0

�4gt✏

2✏
= �2gt. This result has the property when t is small, the

velocity is small. Conversely, when t increases, the speed increases.
This is consistent with our observation that the ball picks up speed

as it falls. Notice this limit is the same as lim
✏!0

h(t+ ✏)� h(t)

✏
. Since

the latter is more often used as the definition of the derivative, we
will use this one as well. [Reference: Herb Gross I.4 Derivatives and
Limits (first 16 minutes and 30 seconds)] Let f : (a, b) ! R be a func-
tion with b > a. The derivative of f at c 2 (a, b), if it exists, is the

limit lim
✏!0

f(x+ ✏)� f(x)

✏
and is denoted by f

0(c) or (Dcf)(1), where

Dcf : R ! R is the linear function R 3 v 7! (Dcf)(v) := (f 0(c))v.
If x is used as the variable input for the function f, f

0(c) might also
be written as df

dx (c) or
�

d
dxf

�
(c). The derivative of f is the function

f
0 : (a, b) 3 x 7! f

0(x), provided that it exists for all x 2 (a, b). f
is di↵erentiable at c i↵ f

0(c) exists. f is di↵erentiable on (a, b) i↵ f

is di↵erentiable at c for all c 2 (a, b). Higher derivatives are defined
inductively: f is n times di↵erentiable i↵ f

0 is (n� 1) times di↵eren-

tiable. The n-th derivative of f is denoted by f
(n) or dnf

dxn . When n is
small, such as n = 3, the n-th derivative may also be written as f

000
.

[Reference: Herb Gross II.1 Derivatives of Some Simple Functions]

Let f : (0,1) ! R be the function defined by (0,1) 3 x 7! f(x) := 1
x .

Then f
0(x) = � 1

x2 for all x 2 (0,1).

Proof. lim
✏!0

1
x+✏ �

1
x

✏
= lim

✏!0

x� (x+ ✏)

✏(x+ ✏)x
= lim

✏!0

�1

x(x+ ✏)
= � 1

x2
. ⌅

sin0 = cos . [Reference: Herb Gross III.1 Circular Functions]

Proof. Since sin(y)�sin(x) = 2 sin
�y�x

2

�
cos

�y+x
2

�
the di↵erence quo-

tient becomes lim
✏!0

sin(x+ ✏)� sin(x)

✏
= lim

✏!0

✓
sin(✏)

✏
cos

✓
2x+ ✏

2

◆◆
=

✓
lim
✏!0

sin(✏)

✏

◆
lim
✏!0

cos
⇣
x+

✏

2

⌘
= 1·cos(x) = cos(x). In this calculation,

we used a result from a previous exercise and continuity of cos . ⌅
The absolute value function f := | · | : R ! R is di↵erentiable
everywhere except at 0. Its derivative is broken up into two cases.

If x < 0, then f
0(x) = lim

✏!0

|x+ ✏|� |x|
✏

= lim
✏!0

�x� ✏+ x

✏
= �1. If

x > 0, then f
0(x) = lim

✏!0

|x+ ✏|� |x|
✏

= lim
✏!0

x+ ✏� x

✏
= 1. For x = 0,

the derivative does not exist because lim
✏%0

|✏|
✏

= lim
✏%0

�✏

✏
= �1 while

lim
✏&0

|✏|
✏

= lim
✏&0

✏

✏
= 1.

The geometric meaning of the derivative
of a function f : R ! R is visualized by
looking at the graph of f. The tangent line
to (the graph of) f at the point (z, f(z)) 2
�(f) is the straight line through (z, f(z))
with slope f

0(z), provided that f
0(z) ex-

ists. Explicitly, if the second coordinate
is described by the variable y, this line
is given by y(x) = (f 0(z))x + f(z) �
(f 0(z))z = (f 0(z))(x � z) + f(z). For ex-
ample, if f(x) = 1 � x

2
, then f

0(x) =
�2x, f(� 1

2 ) =
3
4 , and f

0(� 1
2 ) = 1. Hence

the tangent line to f is given by y(x) =�
x+ 1

2

�
+ 3

4 .

x

y

1
�
x
2

�2 �1 1 2

�4

�3

�2

�1

1

2

3

4

y
(x
) =
� x

+
1
2

� +
3
4

Theorem 5. Let f : (a, b) ! R be a di↵erentiable function with
f
0(x) > 0 (f 0(x) < 0) for all x 2 (a, b). Then f(y) > f(x) (f(y) <

f(x)) for all y, x 2 (a, b) with y > x.

[Reference: Herb Gross II.7 Curve Plotting]

Exercises
For these exercises, for each n 2 N, recall pn denotes the homogeneous
degree n polynomial given by R 3 x 7! pn(x) := x

n
.

Exercise 1. Let a, b, c 2 R. Give an example of a function f : R ! R
with lim

x!b
f(x) = c and an example of a function g : R ! R with

lim
x!a

g(x) = b but for which lim
x!a

f(g(x)) 6= f

⇣
lim
x!a

g(x)
⌘
.

Exercise 2. Plot pn on the domain (�1, 1] for n = 1, 2, . . . , 10. For
each x 2 (�1, 1], compute lim

n!1
pn(x) (be careful about what limit

you’re taking—the answer depends on x). What happens if x = �1?
What about x 2 (�1,�1) [ (1,1)? Hint: use Desmos, the online
graphing calculator!

Exercise 3. What are the largest domains A,B ✓ R such that the
functions A 3 x 7! bx2c and B 3 x 7! tan(

p
x) are continuous?

Exercise 4. What are the roots of the polynomial p : R 3 x 7!
(x + 3)(x + 2)x(x � 1)(x � 2)? Over what subset of R is p positive?
Over what subset of R is p negative? Provide a rough sketch of the
graph of p without using a calculator. If q0 = p for some q : R ! R,
indicate the subsets over which q is increasing and the subsets over
which q is decreasing. On the same plot, sketch a possible graph of q.

Exercise 5. Let a, b, c 2 R. From the limit definition of the derivative,
prove the derivative of R 3 x 7! ax

2 + bx+ c is R 3 x 7! 2ax+ b.

Exercise 6. From the limit definition, prove that p03 = 3p2 and p
0
4 =

4p3. Then, try to prove p
0
n = npn�1 for all n 2 N. Hint: obtain and

prove a formula for factoring x
n � y

n into (x� y) times something.

Exercise 7. Let f : [0,1) ! R be the n-th root function, i.e.
f(x) = x

1/n
. Prove f

0(x) = 1
nx

(1�n)/n for all x 2 (0,1). Hint: in

the di↵erence quotient, set u := (x+ ✏)1/n and v := x
1/n and use the

formula for factoring u
n � v

n into (u� v) times something.

Exercise 8. Fix n 2 N. Let g : (0,1) ! R be the function (0,1) 3
x 7! 1

xn . Using the definition of the derivative, prove g
0(x) = � n

xn+1 .

Hint: use ideas similar to the previous two exercises.

Exercise 9. Following a similar method to the one in this handout,
prove that cos0 = � sin from the definition of the derivative.

Exercise 10. Prove that the function R 3 x 7!
(
1 if x = 0
sin(x)

x otherwise
is continuous. Compute its derivative for all points in its domain for
which it is di↵erentiable. Is it di↵erentiable everywhere?

Exercise 11. Prove that f : R 3 x 7!
p

|x| is continuous. Prove
that f is di↵erentiable on R \ {0} and compute its derivative. What
are limx%0 f

0(x) and limx&0 f
0(x)? Draw a graph of f on the domain

(�4, 4), compute the equation for the tangent line to f at the point�
2, g(2)

�
, and draw this tangent line on the same plot.

Exercise 12. Let f : R ! R be the
function defined by R 3 x 7! 1

4x
4 �

2
3x

3 � 5
2x

2 + 6x. Indicate the domain
over which f

0 is strictly positive. What
is the domain over which f

0 is negative?
Over what domain is f 0 = 0? Compute
f
0(x) for all x 2 (�3, 4) and graph as

much of this function as is possible on
the grid to the right.

x

Exercise 13. Fix a > 0 and N 2 N. Set L := Na. For every or-
dered (N + 1)-tuple of numbers ~f := (f0, f1, f2, . . . , fN ), define the

discrete derivative of ~f to be the ordered (N + 1)-tuple of num-

bers (f 0
0, f

0
1, f

0
2, . . . , f

0
N ) with f

0
n := fn+1�fn�1

2a (set f�1 := fN�1 and
fN+1 = f0). Setting N to be large (such as N = 100) and a to be
small (such as a = 0.1), write a program that computes the discrete
derivative given a list of numbers. To verify your program works, set
L := 2⇡ and N := 100 and apply it to the list of numbers given by
fn := sin

�
2⇡n
100

�
.

https://youtu.be/zKtYCGbCfSc
https://youtu.be/zKtYCGbCfSc
https://youtu.be/xlamQGapfbY
https://youtu.be/FdwTROVfEPE
https://youtu.be/mKMzFKgBluM
https://www.desmos.com/calculator
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Properties of di↵erentiation
Theorem 1. Let f, g : R! R be di↵erentiable functions and let c 2 R.
Then f + g and cf are di↵erentiable and their derivatives are given
by (f + g)0 = f 0

+ g0 and (cf)0 = cf 0, respectively. In other words,
di↵erentiating is a linear operation.

This result lets us compute derivatives of arbitrary polynomials given

that we know p0n = npn�1 for all n 2 N. This is because every polyno-

mial p is of the form R 3 x 7! p(x) = a0 + a1x+ a2x2
+ · · ·+ anxn

for

some n 2 N with ak 2 R for all k 2 {0, 1, 2, . . . , n}. The derivative is

p0 = (a0+a1p1+a2p2+ · · ·+anpn)0 = a00+a1p01+a2p02+ · · ·+anp0n =

0 + a1 + 2a2p1 + · · ·+ nanpn�1.

Theorem 2. Let f, g : R! R be di↵erentiable functions. Then fg is
di↵erentiable and (fg)0(x) = f 0

(x)g(x) + f(x)g0(x) for all x 2 R.
In this notation fg : R ! R denotes the product of f and g (not the

composition) and its value at x 2 R is given by (fg)(x) := f(x)g(x).
This theorem is called the product rule.

(p3 sin)0 = 3p2 sin+p3 cos, i.e.
d
dx

�
x3

sin(x)
�
= 3x2

sin(x) + x3
cos(x)

for all x 2 R.

Given three di↵erentiable functions f, g, h : R ! R the derivative of

the product is (fgh)0 = f 0
(gh) + f(gh)0 = f 0gh+ fg0h+ fgh0.

Theorem 3. Let R f � R g � R be two di↵erentiable functions. Then

R f�g �� R is di↵erentiable and (f �g)0(x) = f 0�g(x)
�
g0(x) for all x 2 R.

This theorem is called the chain rule. [Reference: Herb Gross: II.3

Composite Functions and the Chain Rule] This result is less mysterious

if we use the alternative perspective on the derivative of f at x as a

linear function Dxf : R ! R whose value at 1 is (Dxf)(1) = f 0
(x)

and whose value at v 2 R is (Dxf)(v) = (f 0
(x))v. This linear operator

Dxf is just multiplication by the slope of function f at x. From this

perspective, the chain rule states

R

R

R

x

g(x)

f(g(x))

g

ZZ
f

⌅⌅

f�g
oo

t

ZZJ

⌅⌅
�oo

)

R

R

R

1

g0(x)

f 0
(g(x))g0(x)

Dxg

ZZ

Dg(x)f

⌅⌅

Dx(f�g)
oo

t

ZZJ

⌅⌅
�oo

i.e. Dx(f � g) = (Dg(x)f) � (Dxg) for all x 2 R. In Leibniz notation, if

y represents f as a function of u and u represents g as a function of x,
the chain rule says

dy
dx =

dy
du

du
dx though care should be taken to make

sure this is all expressed in terms of x.

(sin
3
)
0
= (p3 � sin)0 = 3(p2 � sin) cos, i.e. d

dx sin
3
(x) = 3 sin

2
(x) cos(x)

for all x 2 R. Notice the di↵erence between p3�sin and p3 sin above. As

another example, (p3�(p2+7))
0
= (3p2�(p2+7))2p1 = 6p1(p2�(p2+7)),

i.e.
d
dx (x

2
+ 7)

3
= 3(x2

+ 7)
2
2x = 6x(x2

+ 7)
2
for all x 2 R.

Theorem 4. Let f, g : R! R be di↵erentiable functions with g(x) 6= 0

for any x 2 R. Then f
g is di↵erentiable and its derivative is given by

⇣
f
g

⌘0
(x) = f 0(x)g(x)�g0(x)f(x)

(g(x))2 for all x 2 R.

This theorem is called the quotient rule. The following proof is an

illuminating application of the chain rule.

Proof. Let h : R \ {0} ! R be given by R \ {0} 3 x 7! h(x) :=
1
x .

Since g is never zero, R\{0} can be taken to be the target of g. Hence,

the function
1
g : R 3 x 7! 1/g(x) is the composition R h � R \ {0} g �

R. Using h0
(x) = � 1

x2 and the chain rule,

⇣
1
g

⌘0
(x) = (h � g)0(x) =

g0(x)h0
(g(x)) = � g0(x)

(g(x))2 . Finally, applying this result and the product

rule gives

⇣
f
g

⌘0
(x) =

⇣
f 1

g

⌘0
(x) = f 0

(x) 1
g(x) + f(x)

⇣
1
g

⌘0
(x) = f 0(x)

g(x) �
f(x)g0(x)
(g(x))2 =

f 0(x)g(x)�g0(x)f(x)
(g(x))2 for all x 2 R. ⌅

If f : A ! B is one-to-one and onto, the inverse of f is the function

f�1
: B ! A such that f�1 � f = idA and f � f�1

= idB . Do not

conflate f�1
with the function

1
f (which might not even make sense if

A and B are not subsets of real numbers).

Theorem 5. Let f : [a, b]! R be a di↵erentiable one-to-one function
with f 0

(x) 6= 0 for all x 2 [a, b]. Then f([a, b]) is a closed interval [c, d]
in R and f�1

: [c, d] ! [a, b] is di↵erentiable with derivative given by
(f�1

)
0
(y) = 1

f 0(f�1(y)) for all y 2 [c, d].

This is called the inverse function theorem. The fact that f([a, b]) is

a closed interval only relies on the continuity of f. The hard part of

the theorem is proving that f�1
is di↵erentiable. Rather than proving

this, let us take this for granted to derive the formula for (f�1
)
0. Since

f � f�1
= id, the chain rule gives f 0

(f�1
(y))(f�1

)
0
(y) = 1, which

gives the desired result. [Reference: Herb Gross II.4 Di↵erentiation of

Inverse Functions]

R 3 x 7! p�1
3 (x) = x1/3

is the inverse of p3 : R 3 x 7! x3. Notice
that the inverse function is defined on all of R but p03(0) = 0 so the

inverse function theorem does not apply at this point. Nevertheless,

it applies everywhere else on R \ {0}. Hence, the derivative of

p�1
3 on R \ {0}, using the inverse function theorem, is given by

(p�1
3 )

0
(x) =

1
p0
3(p

�1
3 (x))

=
1

3p2(p
�1
3 (x))

=
1

3(x1/3)2
=

1
3x

�2/3
for all

x 2 R \ {0}.
tan :

�
�⇡

2 ,
⇡
2

�
! R is an invertible

di↵erentiable function whose deriva-

tive vanishes nowhere on the domain�
�⇡

2 ,
⇡
2

�
as it is given by tan

0
=

1
cos2

(see Exercise 6). Hence, the inverse

function theorem applies. The inverse

of tan is denoted by arctan and is a

function with domain R. Its deriva-

tive is therefore given by arctan
0
(y) =

1
tan0(arctan(y)) = cos

2
(arctan(y)) =

✓
1p
1+y2

◆2

=
1

1+y2 for all y 2 R.

tan

arctan

�2 �1 1 2

�3

�2

�1

1

2

3

[Reference: Herb Gross III.2 Inverse Circular Functions]

Exercises
For these exercises, for each n 2 N, recall pn denotes the homogeneous

degree n polynomial given by R 3 x 7! pn(x) := xn.

Exercise 1. Let a, b 2 R with a < b. Prove that if a function f :

(a, b)! R is di↵erentiable at c 2 (a, b), then f is continuous at c.

Exercise 2. Using the product rule, linearity of di↵erentiation, and

p01 = 1, prove that p0n = npn�1 for all n 2 N.
Exercise 3. Using the quotient rule and the result from Exercise 2,

prove that R \ {0} 3 x 7! 1
xn has derivative R \ {0} 3 x 7! �n 1

xn+1 .

Exercise 4. Using the inverse function theorem and the result from

Exercise 2, prove that (0,1) 3 x 7! x1/n
has derivative (0,1) 3 x 7!

1
nx

(1�n)/n.

Exercise 5. Using the chain rule and the results from Exercises 2

and 4, prove that if m,n 2 N, the function f : (0,1) 3 x 7! xm/n
is

di↵erentiable and its derivative is given by f 0
(x) = m

n x(m�n)/n
for all

x 2 (0,1).

Exercise 6. Using the quotient rule, prove tan
0
=

1
cos2 . Be sure to

include the domain of tan
0 .

Exercise 7. Draw a graph of cos : [0,⇡]! [�1, 1] to convince yourself

that it is invertible. The inverse of cos is denoted by arccos and is a

function arccos : [�1, 1]! [0,⇡]. What is the largest subset A ✓ [0,⇡]
such that cos : A ! [�1, 1] satisfies the assumptions in the inverse

function theorem? What is the domain B ✓ [�1, 1] such that arccos :

B ! A is di↵erentiable? Compute the derivative of arccos over this

domain.

https://youtu.be/w_JWcGLiifU
https://youtu.be/w_JWcGLiifU
https://youtu.be/MNhkoylpyNA
https://youtu.be/MNhkoylpyNA
https://youtu.be/WfdBrggGJyg


Math 1151Q Honors Calculus I Arthur Parzygnat Week #05

The exponential and logarithm

The exponential function exp : R! R can be defined in several ways:

i. the power series exp(x) =
1X

k=0

xk

k!
for all x 2 R

ii. the (unique) di↵erentiable function satisfying exp0 = exp and
exp(0) = 1

iii. the limit exp(x) = lim
n!1

⇣
1 +

x

n

⌘n
for all x 2 R.

Proving either of these is actually well-defined, much less proving the
equivalence between any of these definitions, is a little beyond our cur-
rent capabilities and would require us to discuss series, integrals, and
interchanging limits. Instead, we will take these for granted and point
out that naively di↵erentiating the power series definition shows that i.

implies ii. Indeed, d
dx

⇣P1
k=0

xk

k!

⌘
=

P1
k=0

d
dx

⇣
xk

k!

⌘
=

P1
k=1

kxk�1

k! =
P1

k=1
xk�1

(k�1)! =
P1

k=0
xk

k! .

exp

ln

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3
It is a fact that the exponential
function is always positive and one-
to-one. In fact, exp : R !
(0,1) is a di↵erentiable bijection
whose derivative vanishes nowhere.
Therefore, it has a di↵erentiable
inverse ln : (0,1) ! R called
the (natural) logarithm and its
derivative, by the inverse func-
tion theorem, is given by ln0(y) =

1
exp0(ln(y)) = 1

exp(ln(y)) = 1
y for all

y 2 (0,1).
Warning: because exp is never zero, it has a multiplicative inverse,
i.e. there is a function h such that h exp = 1, where 1 denotes the
constant function whose value is 1 for all values of x 2 R. Of course,
this function is 1

exp and is not to be confused with ln . For shorthand,

we often write ex := exp(x) and e�x := 1
exp(x) .

The exponential and logarithm functions have many important prop-
erties. This includes ex+y = exey for all x, y 2 R. From this single
crucial property, the usual laws for logarithms follow. For example,
this equality implies ln(ex+y) = ln(exey) for all x, y 2 R. But
ln(ex+y) = x+y = ln(ex)+ln(ey) by definition of the logarithm as the
inverse of exp . Hence, ln(exey) = ln(ex)+ ln(ey) for all x, y 2 R. Since
exp : R! (0,1) is a bijection, this shows that ln(ab) = ln(a) + ln(b)
for all a, b 2 (0,1). By similar, but careful, analysis, one can also
show ln(ab) = b ln(a) for all a 2 (0,1) and b 2 R.

In a previous exercise, you proved that d
dxx

r = rxr�1 for any positive
rational number r and for any x 2 (0,1). By using d

dx
1
x = �1

x2 and the
chain rule, this can be extended to any rational number (exercise!).
Although it might not seem to make sense to take the ⇡-th power

of another number, the functions (0,1) 3 x
f7�! xy g � [ y 2 R can

be defined. Furthermore, f and g are both di↵erentiable on their
domains. As you can imagine, due to the asymmetry, these derivatives
are probably di↵erent. Using logarithms and the chain rule, we can
compute f 0(x) and g0(y). Applying the logarithm to both sides gives
(ln �f)(x) = y ln(x) = (ln �g)(y). Taking the derivatives with respect
to x and y give two separate equations, namely (ln �f)0(x) = y

x and
(ln �g)0(y) = ln(x), respectively. Applying the chain rule to the first
and second gives f 0(x) = yxy�1 and g0(y) = ln(x)xy, respectively. In
short, d

dxx
y = yxy�1 and d

dyx
y = ln(x)xy.

A crude model for the number of E. coli bacteria in a petri dish states
that the quantity doubles every hour, i.e. is given by the function
N : [0,1) 3 t 7! N02t where N0 2 N is the initial concentration and
t 2 [0,1) is given in hours. The rate of growth of the bacteria is
given by the derivative, which is N 0(t) = N0 ln(2)2t for all t 2 [0,1).

Hyperbolic functions

The hyperbolic sine and cosine func-
tions sinh, cosh : R ! R are defined
by sinh(x) := ex�e�x

2 and cosh(x) :=
ex+e�x

2 for all x 2 R. Hyperbolic
tangent tanh : R ! R is defined by
the ratio tanh := sinh

cosh . The other
hyperbolic functions can be defined
analogously to how the trigonomet-
ric functions are defined as appropri-
ate ratios. Although the graph may
be misleading, there are no vertical
asymptotes for sinh, cosh, tanh .

cosh sinh

tanh

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

A quick calculation shows that cosh0 = sinh and sinh0 = cosh .
Hence, tanh0 =

�
sinh
cosh

�0
= cosh2 � sinh2

cosh2 by the quotient rule. While

cos2 +sin2 = 1, the hyperbolic version of this identity states (ex-
ercise!) cosh2� sinh2 = 1. Therefore, tanh0 = 1

cosh2 . By plugging
formulas into the definitions of the hyperbolic functions and using the
properties of the logarithm and the exponential, one can show that
the inverses of these functions are given by

i. sinh�1(x) = ln(x+
p
x2 + 1) for all x 2 R,

ii. cosh�1(x) = ln(x+
p
x2 � 1) for all x 2 [1,1),

iii. tanh�1(x) = 1
2 ln

⇣
1+x
1�x

⌘
.

Hyperbolic functions can be used to describe the curve of a hanging
rope or chain a↵ected by a uniform gravitational field (see Week #01
handout).

Exercises

Exercise 1. A set of functions {f1, f2, . . . , fn} is linearly independent
i↵ the only numbers a1, a2, . . . , an 2 R satisfying a1f1 + a2f2 + · · · +
anfn = 0 (the zero function) is a1 = a2 = · · · = an = 0. Find a
set of four linearly independent functions {f1, f2, f3, f4} whose fourth

derivative equal themselves, i.e. f (4)
k = fk for all k 2 {1, 2, 3, 4}.

Exercise 2. Compute the derivatives of all six hyperbolic functions.
Then compute their inverses by choosing suitable domains and prove
that they are in fact the inverses. Compute the derivatives of the
inverses. Graph all of your results. Be sure to indicate which theorems
you are using.

Exercise 3. Find the domains of the following functions and their
derivatives. Find explicit formulas for their derivatives indicating
which theorems you use.

i. x 7! ln
�

1
8⇡ + cos2(x)

�

ii. x 7! tan
�
⇡
2 tanh(x)

�

iii. x 7! tan
�
⇡�✏
2 tanh(x)

�
, where 0 < ✏ < 1

iv. x 7! tan
�
⇡+✏
2 tanh(x)

�
, where 0 < ✏ < 1

v. x 7! tanh(tan(x))

vi. x 7! esin
3(x)

vii. x 7! ln(cosh(x)� 1)

viii. x 7! (sin(x))cos(3)

ix. x 7! xex

x. x 7! tanh�1(2�3)

xi. x 7! tanh�1(cos(x))

xii. x 7! tanh
⇣
ln
⇣

1
|x|

⌘⌘

xiii. x 7! 2e�x2
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h?2 H2p2H b2i Q7 f : R2 → R �i c ∈ R Bb f−1({c}) = {(x, y) ∈ R2 :
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f(x, y) = x2 − y2

f−1({4})

f−1({2})

f−1({1})

f−1({0})

f−1({−1})

f−1({−2})

f−1({−4})
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g(x, y) = x2 + y2

h?2 AKTHB+Bi 6mM+iBQM h?2Q`2K UA6hV T`QpB/2b � r�v Q7 2tT`2bbBM;
T�`i Q7 � H2p2H b2i Q7 f : R2 → R �b i?2 ;`�T? Q7 � 7mM+iBQMX AM r?�i
7QHHQrb- H2i (a, b) ∈ R2 �M/ H2i ∂1f(a, b) := d

dxf(x, b)
∣∣∣
x=a

/2MQi2 i?2
T�`iB�H /2`Bp�iBp2 Q7 f rBi? `2bT2+i iQ i?2 }`bi p�`B�#H2 2p�Hm�i2/
�i (a, b). aBKBH�`Hv- H2i ∂2f(a, b) := d

dyf(a, y)
∣∣∣
y=b

/2MQi2 i?2 T�`iB�H
/2`Bp�iBp2 Q7 f rBi? `2bT2+i iQ i?2 b2+QM/ p�`B�#H2 2p�Hm�i2/ �i (a, b).
h?2Q`2K RX 6Bt c ∈ R, H2i f : R2 → R #2 � +QMiBMmQmbHv /Bz2`2MiB�#H2
7mM+iBQM- �M/ H2i (a, b) ∈ R2 #2 � TQBMi b�iBb7vBM; f(a, b) = c �M/
∂1f(a, b) ̸= 0 UQ` ∂2f(a, b) ̸= 0VX h?2M i?2`2 2tBbib �M QT2M BMi2`p�H
(α,β), � TQBMi γ ∈ (α,β), �M/ � 7mM+iBQM g : (α,β) → R UQ` h :
(α,β)→ RV rBi? i?2 7QHHQrBM; T`QT2`iB2b,

BX g UQ` hV Bb +QMiBMmQmbHv /Bz2`2MiB�#H2-
BBX g(γ) = c UQ` h(γ) = cV- �M/

BBBX f(x, g(x)) = c ∀ x ∈ (α,β) UQ` f(h(y), y) = c ∀ y ∈ (α,β)VX
h?2 7mM+iBQM (α,β) ∋ x '→ g(x) Bb Q#i�BM2/ #v bQHpBM; 7Q` y �b �
7mM+iBQM Q7 x BM i?2 2tT`2bbBQM f(x, y) = c U7Q` i?2 b2+QM/ bBim�iBQM-
(α,β) ∋ y '→ h(y) Bb Q#i�BM2/ #v bQHpBM; 7Q` x �b � 7mM+iBQM Q7 y BM i?2
2tT`2bbBQM f(x, y) = cVX h?Bb }M�H +QM/BiBQM BM i?Bb i?2Q`2K b�vb i?�i
i?2 +QKTQbBiBQM R f←− (α,β)×R (id,g)←−−− (α,β) Bb i?2 +QMbi�Mi 7mM+iBQM
r?Qb2 p�Hm2 Bb c �i �HH TQBMib BM i?2 BMi2`p�H (α,β).
G2i R2 ∋ (x, y)

f'−→ x2 + y2 �M/ H2i
c := 5 bQ i?�i f−1({c}) Bb i?2 +B`+H2
Q7 `�/Bmb

√
5 +2Mi2`2/ �i (0, 0) BM R2.

G2i (a, b) = (1, 2) ∈ f−1({c}). h?2M
d
dyf(1, y)

∣∣∣
y=2

= d
dy (1 + y2)

∣∣∣
y=2

=

2y
∣∣∣
y=2

= 4 ̸= 0. aQHpBM; 7Q` y �b
� 7mM+iBQM Q7 x BM i?2 2tT`2bbBQM
x2 + y2 = 5 ;Bp2b irQ bQHmiBQMb −3 −2 −1 0 1 2 3
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g(x) =
√
5− x2 �M/ g(x) = −

√
5− x2 7Q` x ∈ (α,β) := (−

√
5,
√
5).

aBM+2 r2 `2[mB`2 bQK2 γ ∈ (−
√
5,
√
5) bm+? i?�i g(γ) = 2,

i?Bb 7Q`+2b mb iQ +?QQb2 i?2 }`bi QTiBQM r?2`2 γ = ±1 bQ i?�i√
5− 12 =

√
4 = 2 �b M22/2/X A7 Qm` TQBMi ?�/ #22M (1,−2), r2

rQmH/ ?�p2 +?Qb2M (−
√
5,
√
5) ∋ x '→ g(x) = −

√
5− x2 BMbi2�/X

"2+�mb2 d
dxf(x, 2)

∣∣∣
x=1

= d
dx (x

2 + 4)
∣∣∣
x=1

= 2x
∣∣∣
x=1

= 2 ̸= 0- r2
+QmH/ ?�p2 �HbQ bQHp2/ 7Q` x BM i2`Kb Q7 y �M/ r2Ƕ/ ;2i i?2 7mM+iBQM
(−
√
5,
√
5) ∋ y '→ h(y) =

√
5− y2 �M/ γ = ±2 bQ i?�i h(γ) = 1.

6BM�HHv- B7 Qm` TQBMi ?�/ #22M (a, b) = (
√
5, 0), d

dyf(
√
5, y)

∣∣∣
y=0

= 0

bQ i?�i r2 rQmH/ MQi #2 �#H2 iQ bQHp2 7Q` y BM i2`Kb Q7 x. >Qr2p2`-
d
dxf(x, 0)

∣∣∣
x=

√
5
= 2
√
5 ̸= 0 bQ i?�i r2 +�M bQHp2 7Q` x BM i2`Kb Q7 y.

h?Bb ;Bp2b (−
√
5,
√
5) ∋ y '→ h(y) =

√
5− y2.

h?2 AJh +QK#BM2/ rBi? i?2 +?�BM `mH2 �HHQrb mb iQ Q#i�BM g′(x)

UQ` h′(y)VX aBM+2 i?2 +QKTQbBiBQM R f←− (α,β) × R (id,g)←−−− (α,β)

UQ` R f←− R × (α,β)
(h,id)←−−− (α,β)V Bb +QMbi�Mi- i?2 /2`Bp�iBp2

Q7 i?Bb +QKTQbBiBQM Bb 0. h?2 +?�BM `mH2 Ur?2M ;2M2`�HBx2/ iQ
7mM+iBQMb Q7 b2p2`�H p�`B�#H2bV +�M #2 �TTHB2/ iQ 2�+? 7mM+iBQM bQ
i?�i r2 +�M bQHp2 7Q` i?2 /2`Bp�iBp2 Q7 g UQ` hVX h?2b2 7mM+iBQMb
T`QpB/2b mb rBi? C�+Q#B�M K�i`B+2b- r?B+? r2 KmHiBTHv iQ Q#i�BM
(D(x,g(x))f) ◦ (Dx(id, g)) = [∂1f(x, g(x)) ∂2f(x, g(x))]

[
1

g′(x)

]
=

[∂1f(x, g(x)) + g′(x)∂2f(x, g(x))] UQ` (D(h(y),y)f) ◦
(Dy(h, id)) = [∂1f(h(y), y) ∂2f(h(y), y)]

[
h′(y)
1

]
=

[∂1f(h(y), y)h′(y) + ∂2f(h(y), y)]VX "2+�mb2 (α,β) ∋ x '→ f(x, g(x)) =
c Bb +QMbi�Mi- i?Bb /2`Bp�iBp2 2[m�Hb x2`Q �M/ r2 ?�p2 i?2 2[m�iBQM
∂1f(x, g(x)) + g′(x)∂2f(x, g(x)) = 0. h?Bb �HHQrb mb iQ bQHp2 7Q`
g′(x) T`QpB/2/ i?�i ∂2f(x, g(x)) /Q2b MQi p�MBb? �M/ Bi Bb ;Bp2M #v
g′(x) = −∂1f(x,g(x))

∂2f(x,g(x))
7Q` �HH x ∈ (α,β) UQ` h′(y) = −∂2f(h(y),y)

∂1f(h(y),y)
7Q` �HH

y ∈ (α,β)V h?2 mb27mHM2bb Q7 i?Bb `2bmHi Bb i?�i Bi Bb MQi �Hr�vb 2�bv iQ
Q#i�BM �M 2tTHB+Bi 7Q`KmH� 7Q` g UQ` hV �M/ Bi Bb i?2`27Q`2 MQi �Hr�vb
2�bv iQ 2tTHB+BiHv i�F2 Bib /2`Bp�iBp2X 6Q` i?Bb `2�bQM- +QKTmiBM; i?2
/2`Bp�iBp2 mbBM; i?2 +?�BM `mH2 �b pB� i?Bb K2i?Q/ Bb +�HH2/ BKTHB+Bi
/Bz2`2MiB�iBQMX (_272`2M+2, >2`# :`Qbb, AAX8 AKTHB+Bi .mz2`2MiB�iBQM)
h?2 i�M;2Mi HBM2 iQ i?2 H2p2H b2i
f−1({5}) �i i?2 TQBMi (1, 2) 7Q` i?2
7mM+iBQM R2 ∋ (x, y)

f'−→ x2 + y2

Bb Q#i�BM2/ #v /Bz2`2MiB�iBM; x2+
(g(x))2 = 5 rBi? `2bT2+i iQ x �M/
mbBM; i?2 +?�BM `mH2 iQ Q#i�BM 2x+
2g(x)g′(x) = 0. aQHpBM; 7Q` g′(x)
;Bp2b g′(x) = − x

g(x) . SHm;;BM; BM
x = 1 UbQ i?�i g(1) = 2V ;Bp2b
g′(1) = − 1

2 , r?B+? Bb i?2 bHQT2 Q7 −1 0 1 2 3

0

1

2

3

•

i?2 i�M;2Mi HBM2X "2+�mb2 i?Bb HBM2 Kmbi BMi2`b2+i i?2 TQBMi (1, 2), i?2
2[m�iBQM /2b+`B#BM; i?Bb HBM2 Bb R ∋ x '→ y(x) = − 1

2x+
5
2 Ui?Bb 7Q`KmH�

r�b Q#i�BM2/ #v }M/BM; b 7`QK y = mx + b bBM+2 r2 FMQr y, x, �M/
mVX PM2 +QmH/ ?�p2 �HbQ Q#i�BM2/ i?Bb b�K2 `2bmHi #v /Bz2`2MiB�iBM;
(h(y))2 + y2 = 5 rBi? `2bT2+i iQ y iQ ;2i h′(y) = − y

h(y) �M/ THm;;BM;
BM y = 2 iQ ;2i h′(y) = −2 r?B+? ;Bp2b i?2 2[m�iBQM R ∋ y '→ x(y) =
−2y + 5 r?B+? Bb 2[mBp�H2Mi iQ Qm` 7Q`KmH� 7Q` y BM i2`Kb Q7 x. q?�i
?�TT2Mb B7 r2 i`v iQ }M/ i?2 i�M;2Mi HBM2 �i i?2 TQBMi (

√
5, 0)\ �b r2

MQiB+2/ #27Q`2- r2 +�MMQi bQHp2 7Q` y �b � 7mM+iBQM Q7 x bQ r2 Kmbi
BMbi2�/ bQHp2 7Q` x �b � 7mM+iBQM Q7 y. h?Bb ;Bp2b mb h′(0) = − 0√

5
= 0

UB7 r2 ?�/ i`B2/ iQ BKTHB+BiHv /Bz2`2MiB�i2 rBi? `2bT2+i iQ x, r2 rQmH/
?�p2 Q#i�BM2/ g′(

√
5) = −

√
5
0 , r?B+? Bb mM/2}M2/V �M/ i?2`27Q`2 ;Bp2b

i?2 i�M;2Mi HBM2 iQ #2 R ∋ y '→ x(y) =
√
5.

_2H�i2/ `�i2b
5

r

11
h

� +QM2@b?�T2/ r�i2` i�MF Bb #2BM; }HH2/ rBi?
r�i2` �i � `�i2 Q7 2 +m#B+ K2i2`b T2` KBMmi2X
h?2 #�b2 Q7 i?2 i�MF Bb 5 K2i2`b BM `�/Bmb �M/
i?2 ?2B;?i Q7 i?2 i�MF Bb 11 K2i2`bX 6BM/ i?2
`�i2 �i r?B+? i?2 r�i2` H2p2H Bb `BbBM; r?2M
i?2 r�i2` Bb 7 K2i2`b /22TX q?�i Bb i?2 `�i2
r?2M i?2 r�i2` H2p2H Bb 3 K2i2`b /22T\

h?2 `2H�iBQMb?BT #2ir22M i?2 pQHmK2 V, `�/Bmb r, �M/ ?2B;?i h Q7 � +QM2
Bb V = 1

3πr
2h. 6Q` � +QM2- i?2 `�/Bmb �M/ ?2B;?i �`2 `2H�i2/ pB� r

h = 5
11

/m2 iQ bBKBH�`Biv Q7 i`B�M;H2bX >2M+2- r = 5
11h. h?2`27Q`2- V = 25

363πh
3.

1�+? Q7 i?2b2 [m�MiBiB2b �`2 +?�M;BM; �b � 7mM+iBQM Q7 iBK2X >2M+2-
i?2 /2`Bp�iBp2 Bb ;Bp2M #v V ′ = 25

121πh
2h′. aBM+2 i?2 ~Qr Q7 r�i2` Bb

+QMbi�Mi- i?Bb ;Bp2b 2 = 25
121π(3)

2h′ bQ i?�i h′ = 242
225π ≈ 0.34 K2i2`b T2`

KBMmi2 r?2M i?2 r�i2` H2p2H Bb 3 K2i2`b /22TX q?2M i?2 r�i2` H2p2H Bb
7 K2i2`b /22T- Bi Bb

(
3
7

)2 iBK2b i?Bb �KQmMi ;BpBM; h′ = 242
1225π ≈ 0.063

K2i2`b T2` KBMmi2X

https://youtu.be/lLmt2UPPuY4


� `2+Q`/ Bb k8 +2MiBK2i2`b BM /B�K2i2` �M/ `Qi�i2b �i d3 `Qi�iBQMb T2`
KBMmi2X h?2`2 Bb � +?BT �i i?2 2/;2 Q7 i?2 `2+Q`/X �i r?�i `�i2 UBM
+K T2` KBMmi2V Bb i?2 +?BT KQpBM; p2`iB+�HHv r?2M Bi Bb 8 +2MiBK2i2`b
�#Qp2 i?2 ?Q`BxQMi�H �tBb\
�Mbr2`X h?2 ?2B;?i h �b � 7mM+iBQM Q7 i?2 �M;H2 Bb ;Bp2M #v h(θ) =
R sin(θ), r?2`2 R = 25 +KX h?2 �M;H2 Bb � 7mM+iBQM Q7 iBK2 �M/ r2 rBb?
iQ +QKTmi2 dh

dt . .Bz2`2MiB�iBM; rBi? `2bT2+i iQ t ;Bp2b dh
dt = R cos(θ)dθdt .

LQi2 i?�i R cos(θ) =
√
R2 − h2 7Q` bK�HH �M;H2b bQ i?�i i?Bb #2+QK2b

dh
dt =

√
R2 − h2 dθ

dt . aBM+2 dθ
dt = 78(2π) = 156π `�/B�Mb T2` KBMmi2- i?Bb

;Bp2b dh
dt = 156π

√
600 = 1560π

√
6 ≈ 12000 +K T2` KBMmi2- BX2X 12

K2i2`b T2` KBMmi2X

GBM2�` �TT`QtBK�iBQM
h?2 /2`Bp�iBp2 Q7 � /Bz2`2MiB�#H2 7mM+iBQM �i � TQBMi +�M #2 mb2/ iQ
H2�`M � HQi �#Qmi i?2 7mM+iBQM BM � M2B;?#Q`?QQ/ Q7 i?�i TQBMiX AM �HH
Q7 i?2 2t�KTH2b r2 ?�p2 b22M- i?2 i�M;2Mi HBM2 iQ � +m`p2 b22Kb iQ #2 �
`2�bQM�#H2 HBM2�` �TT`QtBK�iBQM iQ i?2 +m`p2 T`QpB/2/ i?�i QM2 Bb +HQb2
2MQm;? iQ i?�i +m`p2X G2i f : (a, b)→ R #2 � /Bz2`2MiB�#H2 7mM+iBQM QM
�M QT2M BMi2`p�H �M/ H2i c ∈ (a, b). h?2 HBM2�` 7mM+iBQM L : (a, b) → R
;Bp2M #v (a, b) ∋ x '→ f ′(c)x+f(c)−f ′(c)c = f(c)+f ′(c)(x−c) Bb +�HH2/
i?2 HBM2�`Bx�iBQM Q7 f �i cX h?2 /Bz2`2M+2 (a, b) ∋ x '→ |L(x) − f(x)|
Bb +�HH2/ i?2 /2pB�iBQM �M/ sup

x∈(a,b)
|L(x)− f(x)| Bb +�HH2/ i?2 �++m`�+vX

>2`2 sup
x∈(a,b)

g(x) /2MQi2b i?2 HQr2bi mTT2` #QmM/- � MmK#2` u bm+?

i?�i g(x) ≤ u 7Q` �HH x ∈ (a, b) �M/ bm+? i?�i 7Q` �Mv Qi?2` MmK#2` v,
i?2 BM2[m�HBiv u ≤ v ?QH/bX
GBM2�`BxBM; ln : (0,∞) → R �i c = e2 ;Bp2b (0,∞) ∋ x '→ L(x) =
2 + e−2(x− e2) = 1 + e−2x. aBM+2 e ≈ 2.72, i?Bb HBM2�` �TT`QtBK�iBQM
Q7 ln �i 9 ;Bp2b �TT`QtBK�i2Hv L(9) ≈ 1 + 9

7.40 ≈ 2.22, r?B+? Bb p2`v
+HQb2 iQ i?2 `2�H p�Hm2 ln(9) ≈ 2.20 �b i?2 /2pB�iBQM Bb QMHv �#Qmi 0.02.

ln

L

2 4 6 8 10 12 14

−3
−2
−1

1

2

3

>Qr2p2`- Bi Bb �TT�`2Mi 7`QK i?2 ;`�T? i?�i L Bb � rQ`b2 �TT`Qt@
BK�iBQM 7Q` BMTmib H2bb i?�M e2. 6Q` 2t�KTH2- iQ Q#i�BM �M �++m@
`�+v Q7 �#Qmi 0.1, r2 rQmH/ M22/ iQ }M/ �M BMi2`p�H (a, b) 7Q` r?B+?
sup

x∈(a,b)
|1 + e−2x − ln(x)| ≤ 0.1. Ai Bb MQi TQbbB#H2 iQ Q#i�BM � +HQb2/

7Q`K 2tT`2bbBQM 7Q` i?Bb bBM+2 QM2 Kmbi bQHp2 1 + e−2x − ln(x) = 0.1.
h?2`2 �`2 irQ bQHmiBQMb iQ i?Bb 2[m�iBQM Ui?�i +�M #2 Q#i�BM2/ Mm@
K2`B+�HHvV �M/ i?2v �`2 �TT`QtBK�i2Hv x = 4.558 �M/ x = 11.203.
>2M+2- i?2 �TT`QtBK�iBQM L Bb p�HB/ iQ rBi?BM 0.1 �++m`�+v QM i?2 BM@
i2`p�H (4.558, 11.203). LQiB+2 i?�i i?2 /Bz2`2M+2 #2ir22M 4.558 �M/ e2

Bb 2.831 r?BH2 i?2 /Bz2`2M+2 #2ir22M e2 �M/ 11.203 Bb 3.814 b?QrBM;
i?�i i?2 HBM2�`Bx�iBQM Bb � #2ii2` �TT`QtBK�iBQM 7Q` p�Hm2b H�`;2` i?�M
e2 i?�M Bi Bb 7Q` p�Hm2b bK�HH2` i?�M e2.

hQ 2biBK�i2 1.9994 MQi2 i?�i 24 = 16 �M/ d
dxx

4 = 4x3 bQ
i?�i i?2 HBM2�`Bx�iBQM Q7 p4 �i c = 2 Bb R ∋ x '→ L(x) =
p4(2) + p′4(2)(x − 2) = 24 + 4(23)(x − 2) = 16 + 32(x − 2).
>2M+2- 1.9994 ≈ L(1.999) = 16 + 32(−0.001) = 16 − 0.032 = 15.968
UMQiB+2 r2 /B/MǶi M22/ � +�H+mH�iQ`VX
hQ 2biBK�i2 91.99 MQi2 i?�i 92 = 81 �M/ d

dx9
x = ln(9)9x bQ i?�i i?2

HBM2�`Bx�iBQM Q7 x '→ 9x �i c = 2 Bb L(x) = 81 + 81 ln(9)(x − 1.99) ≈
81 + 81(2.22)(−0.01) ≈ 81 − 1.78 = 79.22 r?B+? Bb [mBi2 +HQb2
iQ i?2 �+im�H p�Hm2 91.99 ≈ 79.24. >2`2- r2 ?�p2 mb2/ Qm` 2�`HB2`
�TT`QtBK�iBQM Q7 ln(9).

.Bz2`2MiB�Hb 
*QMbB/2` i?2 �bbQ+B�iBp2 mMBi�H �H;2#`� Ω∗ Qp2` R ;2M2`�i2/ #v i?2
irQ bvK#QHb dx �M/ dy bm#D2+i iQ i?2 `2H�iBQM (dx)2 = 0 = (dy)2 �M/
dxdy = −dydx. � #�bBb 7Q` i?Bb �H;2#`� pB2r2/ �b � p2+iQ` bT�+2 Bb
{1, dx, dy, dxdy}. G2i C∞(R2) /2MQi2 i?2 b2i Q7 bKQQi?- BX2X BM}MBi2Hv
/Bz2`2MiB�#H2- 7mM+iBQMb R2 → R. h?2 b2i Q7 UbKQQi?V /Bz2`2MiB�H
7Q`Kb QM R2 Bb i?2 i2MbQ` T`Q/m+i Ω(R2) := C∞(R2)⊗Ω∗, BX2X 7Q`K�H
bmKb Q7 2H2K2Mib Q7 i?2 #�bBb rBi? bKQQi? 7mM+iBQMb �b +Q2{+B2MibX
AM i?Bb +�b2- i?2v �`2 �HH Q7 i?2 7Q`K f + g1dx+ g2dy+hdxdy 7Q` bQK2
bKQQi? 7mM+iBQMb f, g1, g2, h : R2 → R. h?Bb Bb �M�HQ;Qmb iQ HBM2�`
+QK#BM�iBQMb Q7 2H2K2Mib Q7 � p2+iQ` bT�+2 #�bBb 2t+2Ti i?�i i?2 +Q27@
}+B2Mib �`2 7mM+iBQMb BMbi2�/ Q7 MmK#2`bX .2}M2 d : Ω(R2) → Ω(R2)
iQ #2 i?2 HBM2�` K�T mMB[m2Hv /2i2`KBM2/ #v

BX df = ∂1fdx+ ∂2fdy 7Q` �HH f ∈ C∞(R2) �M/
BBX d (f + g1dx+ g2dy + hdxdy) = df + dg1dx + dg2dy + dhdxdy 7Q`

�HH f, g1, g2, h ∈ C∞(R2).

d(df) = d(∂1fdx + ∂2fdy) = d(∂1f)dx + d(∂2f)dy = ∂2
1fdxdx +

∂2∂1fdydx + ∂1∂2fdxdy + ∂2
2fdydy = (∂1∂2f − ∂2∂1f)dxdy = 0 7Q`

�HH f ∈ C∞(R2).

1t2`+Bb2b
1t2`+Bb2 RX � bT?2`B+�H i�MF rBi? `�/Bmb r0 Bb }HH2/ rBi? r�i2` �i
� `�i2 Q7 R ;�HHQMb T2` KBMmi2X >Qr [mB+FHv Bb i?2 r�i2` H2p2H `BbBM;
r?2M i?2 /2Ti? Q7 i?2 r�i2` Bb d\
1t2`+Bb2 kX S`QpB/2 irQ [m�HBi�iBp2Hv /Bz2`2Mi +QmMi2`@2t�KTH2b iQ
i?2 AJh r?2M �Mv Q7 i?2 �bbmKTiBQMb 7�BHX L�K2Hv- r?�i ?�TT2Mb
B7 i?2`2 Bb � TQBMi (a, b) ∈ R2 bm+? i?�i f(a, b) = c #mi 7Q` r?B+?
d
dxf(x, b)

∣∣∣
x=a

= 0 �M/ d
dyf(a, y)

∣∣∣
y=b

= 0\ *�M � i�M;2Mi HBM2 #2 /`�rM
iQ i?2 H2p2H b2i f−1({c}) �i i?2 TQBMi (a, b) BM i?2b2 +�b2b\ 1tTH�BMX
1t2`+Bb2 jX SHQi i?2 H2p2H b2ib f−1({c}) Q7 i?2 7mM+iBQM R2 ∋
(x, y)

f'−→ 25(x2 − y2) − 2(x2 + y2)2 7Q` i?2 p�`BQmb p�Hm2b Q7 c ∈
{−100,−50,−25, 0, 25, 50, 75}. q?�i ?�TT2Mb r?2M c = 80\ .Bb+mbb
i?2 TQbbB#BHBiv Q7 #2BM; �#H2 iQ /`�r � HBM2 i�M;2Mi iQ i?2 H2p2H b2i
f−1({0}) �i i?2 TQBMi (0, 0).

1t2`+Bb2 9X �M 2tT2`BK2Mi Bb /QM2 r?2`2 KBt2/ /Qm;? �M/ v2�bi
Bb TH�+2/ #2ir22M ;H�bb TH�i2b Q7 i?B+FM2bb L �M/ i?2 /Qm;? Q7 K�bb
m 72`K2Mib �M/ 2tT�M/b rBi? i?2 �`2� �M/ /2MbBiv `2H�i2/ #v ρ(t) =

m
LA(t) r?2`2 t Bb iBK2X amTTQb2 i?2 �`2� �b � 7mM+iBQM Q7 iBK2 Bb ;Bp2M
#v A(t) = a0(1 + c tanh(t)), r?2`2 a0 > 0 Bb i?2 BMBiB�H �`2� �M/ c Bb �
+QMbi�Mi /2i2`KBM2/ #v ?Qr Km+? v2�bi �M/ /Qm;? Bb BMBiB�HHv BM i?2
KBtim`2X q?�i Bb i?2 `�i2 �i r?B+? i?2 /2MbBiv /2+`2�b2b r?2M i?2
�`2� Q7 i?2 /Qm;? Bb a\

1t2`+Bb2 8X S`Qp2 i?2 7mM+iBQM R ∋ x
f'−→

{
0 B7 x = 0

x2 sin
(
1
x

)
Qi?2`rBb2

Bb

/Bz2`2MiB�#H2X *QKTmi2 f ′(x) 7Q` �HH x ∈ R. Ab f ′ +QMiBMmQmb\ .Bb+mbbX
1t2`+Bb2 eX q`Bi2 /QrM i?2 HBM2�`Bx�iBQM Q7 ln : (0,∞) → R �i i?2
TQBMi c = e Ue Bb 1mH2`Ƕb +QMbi�MiV �M/ /`�r i?2 ;`�T? Q7 ln iQ;2i?2`
rBi? i?2 ;`�T? Q7 i?2 HBM2�`Bx�iBQMX Pp2` r?�i BMi2`p�H Bb i?2 �++m`�+v
0.1\ *QKT�`2 i?2 bBx2 Q7 i?Bb BMi2`p�H iQ i?2 bBx2 Q7 i?2 BMi2`p�H Q#@
i�BM2/ 7`QK HBM2�`BxBM; ln �i i?2 TQBMi e2. _2T2�i �i i?2 TQBMi c = 1.
>BMi, mb2 .2bKQb- i?2 QMHBM2 ;`�T?BM; +�H+mH�iQ`5
1t2`+Bb2 dX q`Bi2 /QrM i?2 HBM2�`Bx�iBQM Q7 sin :

(
−π

2 ,
π
2

)
→ R �i i?2

TQBMi θ = 0 �M/ /`�r i?2 ;`�T? Q7 sin iQ;2i?2` rBi? i?2 ;`�T? Q7 i?2
HBM2�`Bx�iBQMX Pp2` r?�i BMi2`p�H Bb i?2 �++m`�+v 0.1\ _2T2�i 7Q` i?2
7mM+iBQM cos :

(
−π

2 ,
π
2

)
→ R. >BMi, mb2 .2bKQb- i?2 QMHBM2 ;`�T?BM;

+�H+mH�iQ`5
1t2`+Bb2 3X 1tTH�BM r?v i?2 7mM+iBQMb arctan �M/ tanh �`2 ;QQ/
�TT`QtBK�iBQMb Q7 2�+? Qi?2` BM � M2B;?#Q`?QQ/ Q7 0. *QKTmi2 i?2B`
�++m`�+v Qp2` i?2 BMi2`p�Hb (−1, 1) �M/

(
− 1

2 ,
1
2

)
.
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Math 1151Q Honors Calculus I Week #07

Physics
The infinitesimal change in position x of a particle over an infinites-
imal change in time is the velocity of that particle v(t) := dx(t)

dt . A
particle of mass m is thrown straight down o↵ a cli↵. Its change in
velocity over an infinitesimal change is its acceleration a(t) := dv(t)

dt
and Newton’s law says that F = ma, the force on the particle of
mass m is proportional to its acceleration. Ignoring air resistance,
the di↵erential equation describing a mass being thrown down a
cli↵ is mg = ma = mdv

dt , where g is the gravitational constant on
Earth. The solution to this equation is v(t) = v0 + gt and the
position is x(t) = �h0 + v0t +

1
2gt

2 valid for all time t. Here h0 is
the initial height and v0 is the initial velocity. You should verify this
by computing the derivatives and checking they solve the di↵erential
equation. Notice that the position does not depend on mass. Does
the position still not depend on mass if there is air resistance?
For a mass dropping o↵ a cli↵ and being pulled due to gravity
but also being repelled by air resistance, the di↵erential equation
describing this motion is mg � �v2 = ma = mdv

dt , where g is the
gravitational constant on Earth and � is a coe�cient describing the
strength of the air resistance. One can solve this equation for the
velocity and then integrate to find the position. The result for the

position is x(t) = �h0 +
m
� ln

⇣
cosh

⇣
t
p�g

m + arctanh
⇣
v0
q

�
mg

⌘⌘⌘
�

m
� ln

⇣
cosh

⇣
arctanh

⇣
v0
q

�
mg

⌘⌘⌘
, where h0 is the initial height and

v0 is the initial velocity. Computing the derivatives, we can verify this
solves the di↵erential equation. The derivative of the position is (using

the chain rule twice) v(t) = dx(t)
dt = m

�

d
dt cosh(t

p
�g
m +arctanh(v0

p
�

mg ))
cosh(t

p
�g
m +arctanh(v0

p
�

mg ))
=

q
mg
� tanh

⇣
t
p�g

m + arctanh
⇣
v0
q

�
mg

⌘⌘
and the derivative of veloc-

ity is a(t) = dv(t)
dt = gsech2

⇣
t
p�g

m + arctanh
⇣
v0
q

�
mg

⌘⌘
. By using

hyperbolic trigonometric identities, the function R 3 t 7! x(t) solves
the di↵erential equation. It is interesting to plot these two solutions
and see what happens as � approaches 0 from above. This is left as
an exercise. [Reference: Philosophical Math blog]

Chemistry
Let {Ri} and {Pj} be finite sets of reactants and prod-
ucts, respectively. Consider a chemical reaction of the form
R1 + · · ·+RM ! P1 + · · ·+PN . The concentration [Q] of a substance
Q is the number of moles (1 mole = 6.022 ⇥ 1023 molecules) per
liter. During a reaction, the concentration of a reactant or product
varies as a function of time because the reaction occurs at a rate
proportional to the amount of reactants available at that time. The
instantaneous rate of reaction of a substance Q is d[Q]

dt , the derivative
of the concentration [Q] with respect to time. This is negative for

products and positive for reactants, i.e. 0 < d[Pi]
dt = �d[Rj ]

dt for all
i, j. In general, the relationship between the concentration [P ] of a

product and its rate of reaction d[P ]
dt is d[P ]

dt = k[P ], where k > 0 is a
constant describing the reaction rate.

Biology
The von Bertalan↵y growth equation describes the growth of an
organism. The mass of an organism in the shape of a cube of length
L and mass M that ingests at a rate proportional to its surface
area (food is absorbed through the walls) and respires at a rate
proportional to its volume (the organism needs to poop) is governed
by the di↵erential equation dM

dt = aL2 � bL3, where a, b > 0 are
constants. Assuming the organism is composed of water, the mass
is L3 because the density of water is 1 liter per cubic decimeter.
Hence, dM

dt = d
dt (L

3) = 3L2 dL
dt . This turns the di↵erential equation

into 3L2 dL
dt = aL2 � bL3. After rearranging and cancelling terms, it

becomes dL
dt = a

3 � b
3L = k(L1 � L), where k := b

3 and L1 := a
b .

Making fat stacks
Suppose that x0 dollars are invested at an interest of r (r = 0.09
means at 9%) that is compounded annually. The value x(t)
of the investment after t years is given by x(t) = x0(1 + r)t.
If the interest is compounded n times per year, then the

value is x(t) = x0

�
1 + r

n

�nt
. As n increases, this tends to

lim
n!1

x0

⇣
1 +

r

n

⌘nt
= lim

n/r!1
x0

 ✓
1 +

1

n/r

◆n/r
!rt

= x0e
rt. Already

for n = 365, which corresponds roughly to compounding the interest
daily, this is a good approximation. Now imagine that x0/n dollars
are invested at the same rate as the interest is compounded (so once

per year if n = 1). The value after t years is then
ntX

k=1

x0

n

⇣
1 +

r

n

⌘k
=

x0

n

 �
1 + r

n

�nt+1 � 1�
1 + r

n

�
� 1

� 1

!
=

x0

r

⇣
1 +

r

n

⌘✓⇣
1 +

r

n

⌘nt
� 1

◆
.

Taking the limit as n ! 1 gives (“inc” stands for increment

investments) xinc(t) = lim
n!1

ntX

k=1

x0

n

⇣
1 +

r

n

⌘k
=

x0

r

�
ert � 1

�

and gives an approximate for the value after t years. Compare
this to somebody who invests x0 at the beginning of each year
but who experiences interest at an annual rate r compounded
n times per year. The value of their investment after t years

becomes x0

tX

k=1

⇣
1 +

r

n

⌘nk
= x0

 �
1 + r

n

�n(t+1) � 1
�
1 + r

n

�n � 1
� 1

!
=

x0

 �
1 + r

n

�n
�
1 + r

n

�n � 1

!✓⇣
1 +

r

n

⌘nt
� 1

◆
. The limit of this expres-

sion as n ! 1 is (“lum” stands for lump yearly investments)

xlum(t) = lim
n!1

x0

tX

k=1

⇣
1 +

r

n

⌘nk
= x0

✓
er

er � 1

◆�
ert � 1

�
. The

person who invests more at the beginning of the year will experience
more gains over time. Here is a table for the profit (total value minus
net invested) of an given investment of $10000 per year after a total
of t years comparing frequent (daily) deposits versus yearly deposits
assuming an interest rate r = 0.03 compounded daily.

Time ! t = 1 t = 5 t = 10 t = 20 t = 30 t = 50
every day 151 3944 16619 74039 186534 660563
per year 304 4757 18377 78170 193868 678058

Making even fatter stacks
An interest rate of r = 0.03 is typical of a pretty good CD (certificate
of deposit) at your local bank. The total stock market index, say the
S&P 500, provides the investor with an average annual return (AAR)
of roughly 9.8% when averaged out over its lifetime (which is at least
70 years). To define the AAR, let rk := xk�xk�1

xk
be the yearly rate

for k-th year, i.e. if xk�1 is invested once at the beginning of the
k-th year and xk is the value of the investment at the end of the k-th
year, then rk is the unique real number such that xk = (1 + rk)xk�1

(the di↵erence xk � xk�1 is called the return in the k-th year). The
average annual return (AAR) for an index over N years is defined as

r :=
1

N

NX

k=1

rk. Using this AAR, an investor can get a rough estimate

(cf. Exercise 4) for the profit earned from a given investment. We
cannot apply the n ! 1 limit in this case since we are assuming
yearly compounded interest. The table below compares the profits
given an investment of $10000 per year assuming that it is com-
pounded yearly based on the formula x(t) = x0

�
1+r
r

�
((1 + r)t � 1) .

Time ! t = 1 t = 5 t = 10 t = 20 t = 30 t = 50
r = 0.03 300 4684 18077 76764 190026 661807
r = 0.098 980 16767 73323 414772 1439129 11396583

https://philosophicalmath.wordpress.com/2017/10/21/terminal-velocity-derivation/


Maxima and minima of di↵erentiable functions
Let D ✓ R, let f : D ! R be a function, and let c 2 D. f(c) is said
to be

i. the (absolute) maximum of f i↵ f(x)  f(c) for all x 2 D,

ii. the (absolute) minimum of f i↵ f(x) � f(c) for all x 2 D,

iii. a local maximum of f i↵ f(c) is the maximum on (c� ✏, c+ ✏)\D
for some ✏ > 0, and

iv. a local minimum of f i↵ f(c) is the minimum on (c� ✏, c+ ✏)\D
for some ✏ > 0.

[Reference: Herb Gross: II.8 Maxima and Minima]

It is important to know whether a maximum or minimum exists for a
given function. The Extreme Value Theorem is one such theorem.

Theorem 1. Let a, b 2 R with a < b and let f : [a, b] ! R be
continuous. Then f attains a maximum and minimum, i.e. there
exist y, z 2 [a, b] with f(y) a minimum and f(z) a maximum of f.

The two important assumptions in this theorem is the form of the
domain (a closed interval) and the fact that the function must be
continuous. If either of these assumptions are removed, the result is
false. For example, (0, 1) 3 x 7! 1

x is continuous but is unbounded
and obtains neither a maximum nor a minimum. The function [0, 1] 3

x 7!
(
0 if x = 0
1
x otherwise

is defined on a closed interval, is not continuous,

and does not attain a maximum.

a bc

Consider the function R 3 x 7!
f(x) := mx+ c, where m, c 2 R. For
concreteness, suppose that m > 0.
f does not attain its maximum nor
its minimum on R (it is unbounded).
However, if f is restricted to a closed
interval [a, b], its minimum occurs at
a and is given by f(a) = ma+c while
its maximum occurs at b and is given
by f(b) = mb+ c.

Fermat’s theorem relates local maxima and minima of a function to
its derivative.

Theorem 2. Let f : D ! R be a function on a domain D with a local
maximum or minimum at c 2 D. If f 0(c) exists, then f 0(c) = 0.

The converse of this theorem (“if f 0(c) = 0 then f(c) is a local
maximum or minimum”) is false. A counter-example is the function
R 3 x 7! x3 with c = 0. Nevertheless, the points at which the deriva-
tive of a function vanish are incredibly important in the study of the
behavior of functions. A critical point of a function f : D ! R is a
number c 2 D such that f 0(c) = 0 or f 0(c) does not exist.

Notice that the assumption that “f 0(c) exists” cannot be dropped
from Fermat’s theorem. The absolute value function | · | : R ! R
has a local minimum at 0 but is not di↵erentiable at 0.

Consider the function [�⇡, 2⇡] 3 x 7! f(x) := x � 2 sin(x). What are
the absolute maxima and minima of this function? f is di↵erentiable
and its derivative is given by [�⇡, 2⇡] 3 x 7! f 0(x) := 1 � 2 cos(x)
so its local maxima and minima are obtained from setting
0 = f 0(x) = 1� 2 cos(x). The solutions to cos(x) = 1

2 for x 2 [�⇡, 2⇡]
are given by x 2 {�⇡

3 ,
⇡
3 ,

5⇡
3 }. The values of f at these points and the

boundaries of the domain along with which is the max and min are
given in the following table.

x �⇡ �⇡
3

⇡
3

5⇡
3 2⇡

f(x) �⇡ �⇡
3 +

p
6 ⇡

3 �
p
6 5⇡

3 +
p
6 2⇡

local max local min local max
min max

Exercises
Exercise 1. Referring to the physics example of a particle being
thrown o↵ of a cli↵, let x(t, �) denote the position at time t with

air resistance constant �. Show that lim
�&0

x(t, �) = �h0 + v0t +
1

2
gt2

for all t 2 R.

Exercise 2. Referring to the chemistry example, consider the reaction
4NH3 + 3O2 ��! 2N2 + 6H2O, where 4 moles of ammonia reacts
with 3 moles of oxygen to form 2 moles of nitrogen and 6 moles of
water. If the instantaneous rate of the reaction is k > 0 compute
the instantaneous rate of change of the concentrations of ammonia,
oxygen, nitrogen, and water, in terms of k.

Exercise 3. Referring to the biology example of the von Bertalan↵y
growth equation, let L0 be the initial length of an organism. Show
that [0,1) 3 t 7! L(t) = L0e�kt + L1(1 � e�kt) solves the von
Bertalan↵y growth di↵erential equation. Sketch a graph of L assuming
that L0 < L1. Discuss the significance of this.

Exercise 4. Suppose that Ian invests x0 dollars in a mutual fund. Let
rk denote the return rate for the k-th year and suppose that Ian leaves
his investment alone for N years. The formula for the value of the
investment after N years is given by x0(1+r1)(1+r2) · · · (1+rN ). Let
r denote the AAR over this time period. The approximated value of
the investment after N years using the AAR is x0(1 + r)N . Assuming
that rjrkrl (the product of three rates) is so small that it can be
neglected, compute the di↵erence x0(1+r1)(1+r2) · · · (1+rN )�x0(1+
r)N . Discuss the significance of this result. Hint: use the binomial
expansion theorem.

Exercise 5. Consider the same setup as in Exercise 4. Let N = 5
and suppose the yearly rates are given as in the following table.

k = 1 k = 2 k = 3 k = 4 k = 5
rk 0.4 0.4 0.1 0.3 -0.7

Compute the AAR. Assuming that x0 = 10000 is invested every year,
compare the net profit after 5 years using the actual rates provided
versus the computed net profit using the AAR over the 5 year period.
A net profit that is negative indicates a loss. What permutation of
the rk’s results in the largest net profit? What permutation of the rk’s
results in the lowest net profit (greatest loss)? Discuss the significance
of this result and compare this result to Exercise 4. In particular, does
it matter when the market crashes for the investor who only invests
once at the beginning (assume $50000 is invested so that both parties
invest the same amount of money)? What are the benefits/drawbacks
to investing annually based on these models?

Exercise 6. Let r 2 R. Find all the critical points of the function
[0,1) 3 x 7! f(x) := xr and indicate whether the derivative vanishes
or is undefined at these points.

Exercise 7. Is it possible for a continuous real-valued function f to
be defined on all of R and have a critical point c 2 R such that f 0(c)
is not defined? If so, give an example. Otherwise, prove that every
function f : R ! R that has a critical point c 2 R satisfies f 0(c) = 0.

Exercise 8. The Lennard-Jones potential is a model for the potential
describing the interaction between a pair of neutral atoms or molecules.
Although neutral as a whole, atoms have negatively charged electron
clouds surrounding their positively charged nuclei, which create an
e↵ective electrostatic potential due to their multipole moments. The
potential has the form (0,1) 3 r 7! V (r) = a

r12 � b
r6 , where a, b > 0

are constants and r is interpreted as the separation between the two
atoms. In terms of a and b, find the distance rm that minimizes V and
find the absolute minimum �✏ of V. Rewrite the potential in terms of
these new constants.

https://youtu.be/ehDAxjFK1jU
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The Mean Value Theorem

Rolle’s Theorem is a theorem relating the values of a di↵erentiable
function on an interval at its boundary to its derivative on the interior
of that interval.

Theorem 1. Let a, b 2 R with a < b and let f : [a, b] ! R be a

function satisfying

i. f is continuous on [a, b],

ii. f is di↵erentiable on (a, b), and

iii. f(a) = f(b).

Then there exists a point c 2 (a, b) with f 0(c) = 0.

[Reference: Herb Gross: II.9 Rolle’s Theorem and its Consequences]

Consider the function
⇥
0, ⇡

2

⇤
3 x 7! f(x) := cos(x)

p
x. Then f is

continuous on its domain. Although f is not di↵erentiable on
its domain, it is di↵erentiable on

�
0, ⇡

2

⇤
and its derivative is

f 0(x) = cos(x)
2
p
x

� sin(x)
p
x for all x 2

�
0, ⇡

2

⇤
. Finally, f(0) = f(⇡2 ) = 0.

Hence, there exists a point c 2
�
0, ⇡

2

�
such that f 0(c) = 0. Such a

point is a solution to 2c = cos(c)
sin(c) , but it is not obvious a solution to

this equation exists. Rolle’s theorem guarantees its existence.

What can go wrong if any of the hypotheses of Rolle’s theorem fails?
The following three examples are ones for which one of the assumptions
fails but none of the others do.

i. [0, 1] 3 x 7! f(x) :=

(
0 if x = 0

1� x otherwise
. Notice that f satisfies

ii. and iii. but not i. and f 0(x) = �1 for all x 2 (0, 1).

ii. [�1, 1] 3 x 7! g(x) := |x| satisfies i. and iii. but not ii. and
g0(x) 2 {�1, 1} for all x 2 [�1, 0) [ (0, 1]. g0(0) is undefined.

iii. id : [0, 1] ! [0, 1] satisfies i. and ii. but not iii. and id0 = 1
everywhere.

A slight generalization of Rolle’s theorem is the Mean Value Theorem

(MVT), which provides some information about a function based on
its derivative.

Theorem 2. Let a, b 2 R with a < b and let f : [a, b] ! R be a

function satisfying

i. f is continuous on [a, b] and

ii. f is di↵erentiable on (a, b).

Then there exists a point c 2 (a, b) with f 0(c) =
f(b)� f(a)

b� a
.

Notice that Rolle’s Theorem is a special case of the Mean Value The-
orem obtained by setting f(a) = f(b).

The MVT can be used to prove our first theorems about anti-
derivatives.

Theorem 3. Let a, b 2 R with a < b and let f : [a, b] ! R be a

di↵erentiable function such that f 0(x) = 0 for all x 2 (a, b). Then f is

a constant function, i.e. there exists a d 2 R such that f(x) = d for

all x 2 [a, b].

Proof. Let x, y 2 (a, b) with x < y. Then f restricted to [x, y] satisfies
the assumptions of the MVT. Hence, there exists a c 2 (x, y) such that
(y � x)f 0(c) = f(y) � f(x), but the former equals 0 so f(y) = f(x).
Since x, y were chosen arbitrarily, we have f(x) = f(y) for all x, y 2
(a, b). ⌅

Theorem 4. Let a, b 2 R with a < b and let f, g : [a, b] ! R be

di↵erentiable functions such that f 0(x) = g0(x) for all x 2 (a, b). Then
g = f + c for some c 2 R.

Throughout the rest of calculus, you will see that a lot of information
about a function can be determined not just by its first derivative,
but by its higher order derivatives as well. The culminations of this
concept include Lagrange’s remainder theorem, which gives an approx-
imation for a function that is di↵erentiable many times in terms of its
derivatives and polynomials (see Theorem 7), and the Taylor series.

L’Hospital’s rules

Although we were able to prove lim
x!0

sin(x)

x
= 1 using trigonometric

inequalities, we could not apply the Algebraic Limit Theorem (ALT)
because lim

x!0
sin(x) = 0 and lim

x!0
x = 0 and this ratio is undefined.

Occasionally, one is confronted with limits where the ALT fails
and also for which trigonometric or geometric identities might not

be applicable. For instance, consider the limit lim
x!0

ln(x+ 1)

x
. By

graphing the values of the function (�1,1) 3 x 7! ln(x+1)
x , it is

apparent that the limit of this exists as x approaches 0. It is also

apparent that the limit lim
x!1

ln(x+ 1)

x
should be 0.

2 4 6 8 10

1

2

3

0

The first case mentioned above is covered by L’Hospital’s Rule: 0/0
case.

Theorem 5. Let a < b and let c 2 [a, b]. Let f, g : [a, b] ! R be

continuous functions and suppose that the restrictions of f and g to

[a, c)[(c, b] are di↵erentiable. Furthermore, suppose that f(c) = g(c) =
0 and g0(x) 6= 0 for all x 2 [a, c) [ (c, b]. Then

lim
x!c

f 0(x)

g0(x)
= L ) lim

x!c

f(x)

g(x)
= L.

Our first example satisfies the assumptions of this theorem so that

lim
x!0

ln(x+ 1)

x
= lim

x!0

1
x+1

1
=

lim
x!0

1

x+ 1
lim
x!0

1
= 1. As another example,

lim
x!0

tan(x)� x

x3
= lim

x!0

1
cos2(x) � 1

3x2
= lim

x!0

tan2(x)

3x2
= lim

x!0

2 tan(x)

6x cos2(x)
=

lim
x!0

✓
1

3 cos3(x)

sin(x)

x

◆
=

1

3
by two applications of L’Hospital’s rule.

Another instance where the ALT fails is for limits such as
lim
x!0

�
x ln(|x|)

�
and yet this limit can be shown to exist.

The second case mentioned above is covered by L’Hospital’s Rule:

1/1 case.

Theorem 6. Let a < b and let c 2 (a, b). Let f, g : (a, c) [ (c, b) ! R
be di↵erentiable functions. Furthermore, suppose that g0(x) 6= 0 for all

x 2 (a, c) [ (c, b). If lim
x!c

f(x) = ±1 and lim
x!c

g(x) = ±1, then

lim
x!c

f 0(x)

g0(x)
= L ) lim

x!c

f(x)

g(x)
= L.

The above limit can be expressed as lim
x!0

x ln(|x|) = lim
x!0

ln(|x|)
1/x

,

where the assumptions of this theorem now apply. The limit is

lim
x!0

�
x ln(|x|)

�
= lim

x!0

✓
1/x

�1/x2

◆
= � lim

x!0
x = 0. One can also extend

this theorem to compute limits as x ! +1 or x ! �1. For example,
one could ask does ln(x) grow as x1/n for any n 2 N? Computing

lim
x!1

ln(x)

x1/n
= lim

x!1

1/x

(1/n)x(1/n)�1
= lim

x!1

n

x1/n
= 0 shows this is false.

https://youtu.be/GqVQTRb-QoA


Lagrange’s Remainder Theorem expresses that successive derivatives
of a function at a point provide information about how the function
looks like at nearby points. If f : R ! R is n-times di↵erentiable, then
its n-th derivative is denoted by f (n).

Theorem 7. Let R > 0 and let f : (�R,R) ! R be a function that is

di↵erentiable N + 1 times with N 2 N. Set an := f(n)(0)
n! for each n 2

{0, 1, . . . , N + 1}. Also define (�R,R) 3 x 7! SN (x) :=
NX

n=0

anx
n, and

EN : (�R,R) ! R by EN := f�SN . Then, for any x 2 (�R,R)\{0},
there exists a c 2 (�|x|, |x|) such that EN (x) = f(N+1)(c)

(N+1)! xN+1
for that

particular value of x.

Given any di↵erentiable function f, the theorem says that the value
of f at some point x 2 (�R,R) \ {0} can be expressed in terms of two
quantities. The first is a polynomial evaluated at x all of whose data
comes from the (successive) derivatives of f at a single point, namely
0. This is “infinitesimal data.” The second quantity is essentially
what is left over. However, it, too, can be expressed as a polynomial
of the next degree. This is no longer infinitesimal since the point c
could in general be larger than 0, but it is at least between �|x| and
|x|. The importance of EN is the actual expression for it in terms of
c 2 (�|x|, |x|), which illustrates that if the higher order derivatives of
f are not unreasonably large, then the error term is very small.

Consider the function f : (�1,1) ! R given by (�1,1) 3 x 7!
f(x) := ln(x + 1). The first few approximations using only the
polynomial terms associated to the derivatives of f at 0 is given
on the graph on the left while the di↵erence between these Taylor
approximations from the partial sums Sn and the actual function f is
drawn on the graph on the right.
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As the graph on the right indicates, the error term approaches
zero as n increases. We can try to provide a bound for this error
term using Lagrange’s Remainder Theorem. Note that f (N+1)(x) =
(�1)NN !
(x+1)N+1 for N 2 N [ {0} and for all x 2 (�1, 1). Hence, fix

x 2 (�1, 1). Then
��f (N+1)(c)

�� = N !
(c+1)N+1 for all c 2 (�|x|, |x|) so that

����
f (N+1)(c)

(N + 1)!
xN+1

����  N !

(N + 1)!

✓
|x|

c+ 1

◆N+1

=
1

N + 1

✓
|x|

c+ 1

◆N+1

.

If c were arbitrary, this could tend to infinity, so a blind estimate
will not help (take for example x = �0.9 and c = �0.8). There-
fore, let us instead restrict attention to x 2

�
� 1

2 ,
1
2

�
. In this case,

|x|
c+1 < 1 so that lim

N!1

��EN (x)
�� = 0. We can also compute c ex-

plicitly. Setting
f (N+1)(c)

(N + 1)!
xN+1 = ln(x + 1) �

NX

n=1

(�1)n + 1

n
xn

gives (c + 1)N+1 =
(�1)NxN+1

(N + 1)
⇣
ln(x+ 1)�

PN
n=1

(�1)n+1
n xn

⌘ so that

c =
x

h
(N + 1)

⇣
ln(x+ 1)�

PN
n=1

(�1)n+1
n xn

⌘i1/(N+1)
� 1.

The successor of this theorem is the Taylor series expansion for an
infinitely di↵erentiable function. It states that under suitable
conditions, a large class of infinitely di↵erentiable functions can be
approximated very well by a power series whose coe�cients are the
higher derivatives of a function at a single point !

Exercises

Exercise 1. Let f : [a, b] ! R be a di↵erentiable function.

i. Show that if f 0(x) 6= 0 for all x 2 [a, b] then f is one-to-one.
Hint: prove the contrapositive (this means to prove “not B implies
not A” instead of directly proving “A implies B”—the two are
equivalent), i.e. prove that “if f is not one-to-one, then there
exists an x 2 [a, b] such that f 0(x) = 0.” Second hint: use Rolle’s
theorem.

ii. Provide an example to show that the converse statement need not
be true. Namely, give an example of a one-to-one function f :
[a, b] ! R for which there exists a point x 2 [a, b] with f 0(x) = 0.

Exercise 2. Let f : [a, c] ! R be a di↵erentiable function such that
f 0(x) = m for all x 2 [a, c] for some constant m 2 R. Prove that there
exists a b 2 R such that f(x) = mx+ b for all x 2 [a, c]. Hint: Define
the function g : [a, b] ! R by g(x) := mx. What is (f � g)0 equal to?
What does this say about f � g?

Exercise 3. Let L,R 2 R with L < R and let f : [L,R] ! R be a
di↵erentiable function such that f 0(x) = 2a2x+a1 for all x 2 [L,R] for
some constants a2, a1 2 R. Prove that there exists an a0 2 R such that
f(x) = a2x2 + a1x+ a0 for all x 2 [L,R]. Hint: look at the hint from
the previous exercise and define a suitable function g : [L,R] ! R.
Exercise 4. Let L,R 2 R with L < R and let f : [L,R] ! R be
a di↵erentiable function such that f 0(x) =

Pn
k=1 kakx

k for all x 2
[L,R] for some constants a1, a2, . . . , an 2 R. Prove that there exists
an a0 2 R such that f(x) =

Pn
k=0 k!akx

k for all x 2 [L,R]. Hint: look
at the hint from the previous exercise and define a suitable function
g : [L,R] ! R.
Exercise 5. Is the converse of L’Hospital’s rule: 0/0 case true?
Namely, if f, g : [a, b] ! R are di↵erentiable with f(c) = g(c) = 0

for some c 2 (a, b), does lim
x!c

f(x)

g(x)
= L imply lim

x!c

f 0(x)

g0(x)
= L?

Exercise 6. Compute the following limits.

i. lim
x!0

sin(x)� x

x3
.

ii. lim
x!0

sin(x)�
�
x� 1

6x
3
�

x5
.

iii. lim
x!0

sin(x)�
�
x� 1

6x
3 + 1

120x
5
�

x7
.

iv. lim
x!0

sin(x)�
PN

n=1
(�1)n+1x2n�1

(2n�1)!

x2N+1
for any N 2 N. Here k! := 1 · 2 ·

3 · · · (k � 2) · (k � 1) · k denotes k factorial.

v. lim
x!0

ln(1 + x)� x

x2
.

vi. lim
x!0

ln(1 + x)�
⇣
x� x2

2

⌘

x3
.

vii. lim
x!0

ln(1 + x)�
⇣
x� x2

2 + x3

3

⌘

x4
.

viii. lim
x!0

ln(1 + x)�
PN

n=1
(�1)n+1xn

n

xN+1
.

ix. lim
x!1

⇣
(1� x) ln

�
| ln(x)|

�⌘
.

x. lim
x!0

ln
�
| ln(x)|

�

ln(|x|) .

Exercise 7. Let (�1,1) 3 x 7! f(x) := ln(x + 1). Find c explicitly
and compute the function E1 for x = 1

3 . Do the same for E2.

Exercise 8. Find c and EN for any x 2 R for the function cos .
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Curve plotting
Derivatives provide us with a lot of information about the shape of
the graph of a function.

Theorem 1. Let f : (a, b) ! R be a di↵erentiable function.

i. If f 0(x) > 0 for all x 2 (a, b), then f is increasing, i.e. f(x) < f(y)
for x, y 2 (a, b) with x < y.

ii. If f 0(x) < 0 for all x 2 (a, b), then f is decreasing, i.e. f(x) >

f(y) for x, y 2 (a, b) with x < y.

The proof of this theorem is another application of the Mean Value
Theorem (MVT).

The second derivative of a function provides information about the
curvature of the graph of that function. To state the theo-
rem, it is useful to introduce the concept of convex and concave
functions. A function is f : (a, b) ! R is strictly convex i↵
f(�x + (1 � �)y) < �f(x) + (1 � �)f(y) for all x, y 2 (a, b) and
for all � 2 (0, 1). A function is f : (a, b) ! R is strictly concave
i↵ f(�x + (1 � �)y) > �f(x) + (1 � �)f(y) for all x, y 2 (a, b) and
for all � 2 (0, 1). If the word “strictly” is dropped, then the strict
inequalities become equalities.

concave

p q�p+ (1� �)q

•
f(�p+ (1� �)q)

•f(p)
•f(q)

•
�f(p) + (1� �)f(q)

1

1

0

convex

p q�p+ (1� �)q

•
f(�p+ (1� �)q)

•
f(p)

•
f(q)

•
�f(p) + (1� �)f(q)

1

1

0

An example of a concave function is the Shannon entropy of
a probability distribution. For two events, this takes the form
(0, 1) 3 p 7! H(p) := �p ln(p) � (1� p) ln(1� p). H can be extended
continuously to [0, 1] by defining H(0) := 0 and H(1) := 0.

The second derivative of a function, if non-zero, describes the concav-
ity or convexity of a function.

Theorem 2. Let f : (a, b) ! R be a twice di↵erentiable function.

i. If f 00(x) > 0 for all x 2 (a, b), then f is strictly convex.

ii. If f 00(x) < 0 for all x 2 (a, b), then f is strictly concave.

Be aware, however, that a function can be concave or convex even
if its second derivative is zero at a particular point. For example,
consider the function R 3 x 7! p4(x) := x

4
. The second derivative of

this function at x = 0 is 0 and yet it is convex.

Combining the previous results, we have the following incredibly
useful result about first and second derivatives and optimization. It
is called the second derivative test.

Theorem 3. Let f : (a, b) ! R be a twice di↵erentiable function such
that f 00 is continuous near c 2 (a, b).

i. If f 0(c) = 0 and f
00(c) > 0, then f has a local minimum at c.

ii. If f 0(c) = 0 and f
00(c) < 0, then f has a local maximum at c.

Let f : R ! R be a twice di↵erentiable function whose second deriva-
tive is continuous and suppose that one is given information about f
and its derivatives as in the following tables. A rough sketch of the
graph of f can be obtained from this information as in the graph on
the right. f(0) = 3

f(2) = �1

(�1, 0) (0, 2) (2,1)
f
0(x) > 0 f

0(x) < 0 f
0(x) > 0

(�1, 1) (1,1)
f
00(x) < 0 f

00(x) > 0

f

�1 1 2 3

�4
�3
�2
�1

1
2
3
4
5
6

[Reference: Herb Gross: II.7 Curve Plotting]

Even, odd, and periodic functions
Define R 3 x 7! r(x) := �x 2 R be the function that reflects all
numbers across 0. A function f : R ! R is even i↵ f � r = f

and odd i↵ f � r = r � f. Given a real number L 2 R, defined
R 3 x 7! sL(x) := x + L 2 R be the function that shifts all numbers
by L. A function f : R ! R is periodic i↵ there exists a number
L 2 R such that f � sL = f. The smallest positive number L such
that f � sL = f is called the period of f. Knowing when a function
is even, odd, or periodic will be incredibly helpful when we discuss
definite integrals.

Exercises
Exercise 1. Prove the Shannon entropy for probability distributions
on two events is convex by using the definition. Then prove this using
calculus by taking the second derivative. Which proof is easier?

Exercise 2. If f : (a, b) ! R is a twice di↵erentiable function that
is strictly convex on all of (a, b). Does this imply f

0(x) > 0 for all
x 2 (a, b)? Explain.

Exercise 3. Show that if a function f : R ! R is odd, then f(0) = 0.
Check that the function defined by the formula h(x) = 1

x is odd. Do
these two facts contradict each other? Explain.

Exercise 4. Show that if a function is both even and odd, then it is
the 0 function.

Exercise 5. Show that if a function is periodic and convex, then it is
constant.

Exercise 6. Show that if a function f : R ! R is periodic and
lim
x!1

f(x) exists, then f is constant.

Exercise 7. Show that if a function f : R ! R is even and di↵eren-
tiable at 0, then f

0(0) = 0.

Exercise 8. Show that if a function is periodic and di↵erentiable,
then the derivative is also periodic. If the derivative of a function is
periodic, is the function periodic? Explain.

Exercise 9. Find a degree 3 polynomial R 3 x 7! p(x) := a0 + a1x+
a2x

2+a3x
3 whose values and derivatives match those of f in the table

after Theorem 3 in this handout. Are there multiple solutions to this
problem? If so, find another polynomial R 3 x 7! q(x) := b0 + b1x +
b2x

2 + b3x
3 satisfying the conditions in that table. Otherwise, prove

that your polynomial is the unique one satisfying these conditions.

Exercise 10. The ideal gas law is a relationship between the pressure
P, temperature T (in Kelvin), the volume V, and the number n of moles
of an ideal gas in some container. It is given by PV = nRT, where R is
a constant, called the universal gas constant. At constant temperature
T, the pressure is inversely proportional to the volume P = nRT

V .

This function has no critical points on its domain (0,1). Furthermore,
it is positive, convex, and has limits given by lim

V!0
P (V ) = 1 and

lim
V!1

P (V ) = 0 (verify this!). Not all gases can be adequately modeled

as an ideal gas. For this reason, other models are needed. One such

model is the Van der Waals gas law. It is given by
⇣
P + an2

V 2

⌘
(V �

bn) = nRT, where a and b are positive constants (which are computed
empirically by data fitting and therefore depend on the gas). Solve
this equation for P and compare these two functions. For example,
discuss the critical points, concavity, etc. of the Van der Walls pressure
in terms of the volume (assume that T is constant). Let Vc be the
volume, Pc the pressure, and Tc the temperature at which P (Vc) = Pc,

P
0(Vc) = 0, and P

00(Vc) = 0. Solve for a and b in terms of Vc, Tc, and
Pc. Rewrite P in terms of these other constants. Compare and contrast
the graphs of P depending on the three possibilities: i. T > Tc ii.
T = Tc and iii. T < Tc.

https://youtu.be/mKMzFKgBluM
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Optimization

An optimization problem consists of a function f : Rn ! R subject to
constraints given by level sets of functions g1, . . . , gk : Rn ! R for val-
ues c1, . . . , ck 2 R, respectively. A solution of an optimization problem
is a vector ~x := (x1, . . . , xn) 2 Rn for which g1(~x) = c1, . . . , gk(~x) = ck
satisfying the following maximization (or minimization) condition:
for any other vector ~y 2 Rn satisfying g1(~y) = c1, . . . , gk(~y) = ck, then
f(~x) � f(~y) (or f(~x)  f(~y)). The variables x1, . . . , xn represent
some physical parameters while the level sets g�1

1 ({c1}), . . . , g�1
k ({ck})

describe constraints that these parameters must satisfy. An optimiza-
tion solution is a set of parameters that maximizes (or minimizes) f
but are still within the level sets. The same definition makes sense if
the domains of f, g1, . . . , gk are replaced by subsets of Rn.

If k = n � 1 and we are fortunate enough, we can use the constraint
equations to solve for all of the variables in terms of a single one,
say x1. Then f(x1, . . . , xn) = f(x1, x2(x1), . . . , xn(x1)). If f and
all of the functions x2, . . . , xn of x1 are di↵erentiable, maximizing
or minimizing this function is obtained by finding the critical
points by taking the derivative and setting it equal to zero, i.e.
d

dx1
f(x1, x2(x1), . . . , xn(x1)) = 0. One then analyzes the critical

points to determine if they are maxima or minima.

If k 6= n � 1 or if it is not easy (or possible) to solve for all of the
parameters in terms of a single parameter, then other techniques are
needed. This is covered in multivariable calculus under the topic
“Lagrange multipliers.”

A cylindrical can is made to hold L liters of a liquid. What radius
and height would minimize the cost needed to manufacture the
can? Let r and h denote the radius and height, respectively. The
cost is proportional to the surface area of the can, which is given
by A(r, h) := 2⇡r2 + 2⇡rh, where the first term represents the
top and bottom lid while the second term represents the cylindri-
cal shell. Since the cylindrical can holds L liters, its volume is
constant. Hence, the level set V �1({L}) of the volume function
(0,1) ⇥ (0,1) 3 (r, h) 7! V (r, h) := ⇡r2h defines the constraint. In
terms of the notation from the definition, n = 2, x1 = r, x2 = h, f = A,
k = 1, g1 = V, and c1 = L. The constraint equation takes the form
⇡r2h = L which allows us to solve for h since it is given by h = L

⇡r2 .
Note that L liters = L cubic decimeters so that we do not have to
include any factors of 10. We just have to express our answers in terms
of decimeters. Therefore, A(r, h(r)) = 2⇡r2 + 2⇡r

�
L

⇡r2

�
= 2⇡r2 + 2L

r

and its derivative is d
drA(r, h(r)) = 4⇡r � 2L

r2 . ro is a critical point

of A if and only if 4⇡ro � 2L
r2o

= 0. Solving for ro gives ro =
�

L
2⇡

�1/3

decimeters. ro is a minimum for many reasons:
i. A00(r0, h(r0)) > 0,

ii. lim
r!0

A(r, h(r)) = 1 and lim
r!1

A(r, h(r)) = 1 and continuity imply

A attains a minimum,

iii. A0(r0+✏, h(r0+✏)) > 0 and A0(r0�✏, h(r0�✏)) < 0 for su�ciently
small ✏ > 0.

Plugging ro into h gives h(ro) =
L
⇡

�
L
2⇡

��2/3
=

�
L
4⇡

�1/3
decimeters.

Fix a, b > 0. What is the area of the largest rectangle that can be

inscribed in the ellipse given by the level set equation x2

a2 + y2

b2 = 1?
Let (x, y) be one of the corners of the rectangle, which we may
assume is on the ellipse and is in the first quadrant. Solving for

y as a function of x gives y = b
q
1� x2

a2 . The area of the rect-

angle is therefore A = 4xy = 4bx
q

1� x2

a2 . Maximizing this gives

0 = dA
dx = 4b

q
1� x2

a2 � 4bx2

a2
q

1� x2

a2

. Multiplying by
q

1� x2

a2 and

rearranging gives 1 � x2

a2 = x2

a2 so x = ap
2
. Hence y = b

q
1� 1

2 = bp
2

so that the largest area is A = xy = ab
2 .

Newton’s method

Let f : R ! R be a function and let x0 2 R. Newton’s approximation
sequence is the sequence of real numbers x1, x2, . . . defined as follows.

f
L0

x0

Let L0 : R ! R be the linear approxima-
tion to f at x0, i.e. L0(x) = f 0(x0)x +�
f(x0) � f 0(x0)x0

�
. Let x1 be the root of

this line, i.e. x1 satisfies 0 = L0(x1) =
f 0(x0)x1 +

�
f(x0)� f 0(x0)x0

�
. Solving for

x1 gives x1 = f 0(x0)x0�f(x0)
f 0(x0)

= x0 � f(x0)
f 0(x0)

.

Note that f 0(x0) must not be zero in order
for x1 to be defined.

Similarly, let L1 : R ! R be the linear
approximation to f at x1, i.e. L1(x) =
f 0(x1)x +

�
f(x1) � f 0(x1)x1

�
. Let x2 be

the root of this line, i.e. x2 satisfies 0 =
L1(x2) = f 0(x1)x2 +

�
f(x1) � f 0(x1)x1

�
.

Solving for x2 gives x2 = f 0(x1)x1�f(x1)
f 0(x1)

=

x1 � f(x1)
f 0(x1)

. Note that f 0(x1) must not be
zero in order for x2 to be defined.

f

L1

x1

We continue in this fashion, which requires the derivatives of f eval-
uated at xn to always be nonzero since xn+1 = xn � f(xn)

f 0(xn)
. Under

suitable conditions, the sequence converges lim
n!1

xn to a root of the

function f. I am not aware of necessary and su�cient conditions for
this to happen, but here are some thoughts. Let [a, b] ✓ R be a closed
interval on which f has a single root and suppose f 0(x) 6= 0 for all

x 2 [a, b]. Define [a, b] 3 x 7! g(x) := x� f(x)
f 0(x) . In order to have some

control over the successive approximations to the root, it is su�cient
to demand the image of g to be in [a, b] as well. In addition, notice
that if xr is the root of f, then g(xr) = xr.

Theorem 1. Let f : R ! R and let [a, b] ✓ R be a closed interval
containing a single root of f. Suppose that f is twice di↵erentiable with
f 0(x) 6= 0 for all x 2 [a, b] and suppose there exists a number k 2 [0, 1)

such that
��� f(x)f

00(x)
(f 0(x))2

���  k for all x 2 [a, b]. Then for any x0 2 [a, b], the

sequence x0, x1 := g(x0), x2 := g(g(x0)), . . . converges to the unique
root of f.

Proof. This is a consequence of Exercise 18.23 in my notes on Analysis
II applied to the function [a, b] 3 x 7! g(x) := x� f(x)

f 0(x) since g0(x) =

1� (f 0(x))2�f 00(x)f(x)
(f 0(x))2 = f 00(x)f(x)

(f 0(x))2 . ⌅

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
The function R 3 x 7! cos(x)� x
has a single root. To find the root
of f up to a certain number of
decimal places, make a guess such
as x0 = 0.8 and plug into the
function g(x) := x � f(x)

f 0(x) = x +
cos(x)�x
sin(x)+1 . By iterating this, we get

the sequence x0, x1 = g(x0), x2 =
g(g(x0)), . . . , the first values of
which are given below.

x0 = 0.8

x1 u 0.73985330637

x2 u 0.73908526340

x3 u 0.73908513321

x4 u 0.73908513321

0.2 0.4 0.6 0.8 1

�1

�0.8

�0.6

�0.4

�0.2

0.2

This shows that even after four iterations,
the root of f is 0.73908513321 up to 11 dec-
imal places. Note that if you had chosen
a di↵erent initial starting position for x0,
your answer is still guaranteed to converge
to the root because g0(x) = cos(x)(x�cos(x))

(1+sin(x))2

provided that the initial starting point is
chosen in (0, 1]. This is because |g0(x)|  k
for some k 2 (0, 1) for all x 2 (0, 1]. Notice
g0(0) = �1 so this condition is not satis-
fied. Theorem 1 is not valid for x satisfying
|g0(x)| � 1.

http://www.math.uconn.edu/~parzygnat/math3151s17/3151Spring2017Notes.pdf
http://www.math.uconn.edu/~parzygnat/math3151s17/3151Spring2017Notes.pdf


Antiderivatives

Let f : R ! R be a function. An antiderivative of f is a di↵erentiable
function F : R ! R such that F 0 = f. Note that if F and G are
antiderivatives of f, then by Theorem 4 from Week #08, F � G is a
constant. In most applications, this constant is important.

If di↵erentiation is viewed as a function whose domain is the set
of di↵erentiable functions, we can ask if there is an inverse. Let S
be the set of di↵erentiable functions on R, let T be the set of all
functions on R, and let D : S ! T be the assignment sending any
di↵erentiable function f to its derivative D(F ) := F 0. In this notation,
the linearity of di↵erentiation means D(F + G) = D(F ) + D(G) and
D(cF ) = cD(F ) for all F,G 2 S and c 2 R. Let R be the range
of D. Then D : S ! R is onto. Therefore, there exists a function
I : R ! S such that D � I = idR (every surjective function has a
right inverse—take this for granted). Is D one-to-one? No, because if
F and G satisfy D(F ) = D(G), i.e. F 0 = G0, then F �G is a constant.
Therefore, for any function f 2 R let F be any antiderivative of
f. Then the level set D�1({f}) = {F 2 S : F 0 = f} is given by
D�1({f}) = {F + C : C 2 R, F 0 = f}. Putting all of this together
says that the set of all solutions F to D(F ) = f is equal to a particular
solution, some di↵erentiable function F such that F 0 = f, plus any
constant. [Reference: Herb Gross: II.10 Inverse Di↵erentiation and
Herb Gross: II.11 The “Definite” Indefinite Integral].

One of the theorems on derivatives we discovered is the power
rule which says p0n = npn�1, where pk(x) := xk for all
k 2 {0, 1, 2, . . . }. Therefore, we can ask: “what is the set of
all di↵erentiable functions F such that F 0 = pn?” By thinking
backwards, we know D(pn+1) = (n + 1)pn so solving for pn gives

pn = 1
n+1D(pn+1) = D

⇣
pn+1

n+1

⌘
. Therefore, one particular solution

is pn+1

n+1 . Therefore, the general solution to F 0 = pn is the setn
pn+1

n+1 + C : C 2 R
o
. For example, if n = 4, then we want a function

F such that F 0(x) = x4. Since d
dxx

5 = 5x4, we divide by 5 to obtain
d
dx

⇣
x5

5

⌘
= x4 but also d

dx

⇣
x5

5 + C
⌘
= x4 for any C 2 R.
Let us examine why +C is so im-
portant. Imagine you drop a rock
o↵ the top of a cli↵ at the be-
ginning of your timer. You know
the velocity of the rock as it falls
is given by v(t) = �gt, where
g = 9.81 meters per second. What
is the height of the rock as mea-
sured by someone at the bottom
of the cli↵ at time t? To find the
height, we solve dx

dt = �gt. One

solution is x(t) = � gt2

2 but if we
plug in t = 0, we get x(0) = 0,

which is not possible. Where is the rock at time t = 0? Obviously, it’s
at the top of the cli↵. If we include +C in our antiderivative, we get

x(t) = � gt2

2 + C. If h is the height of the cli↵ above the ground, then

x(0) = h. This forces C = h in this case. Therefore, x(t) = � gt2

2 + h.

Imagine a force acting on a particle of mass m subject to motion along
a straight line. By Newton’s force equation F = ma, one can solve for
a = F

m . Since a = dv
dt = d2x

dt2 is the second derivative of the displace-
ment, one can solve for the displacement as a function of time. For
example, suppose F (t) = k cos(t) for all t 2 R with k some constant
and the initial position of the mass is x0 and the initial velocity is v0.
Antidi↵erentiating k cos(t)

m once gives v(t) = k sin(t)
m + c1. At t = 0, we

have v0 = v(0) = c1 so v(t) = k sin(t)
m + v0. Antidi↵erentiating again

gives x(t) = �k cos(t)
m + v0t + c2. At t = 0, we have x0 = � k

m + c2 so
c2 = x0 +

k
m . Therefore, x(t) = x0 + v0t+

k
m

�
1� cos(t)

�
for all t 2 R.

Exercises

Exercise 1. Find a variety of five or six cans and measure them (in
units of decimeters). Compute their area and volume. Then compute
the optimal radius, height, and area for that given volume. Make a
table of your results and discuss the significance of your findings.

Exercise 2. Fix r > 0. What is the area of the largest isosceles
triangle that can be inscribed in a circle of radius r? Recall, an isosceles
triangle is a triangle for which two sides have the same length.

Exercise 3. Fix r > 0. Consider the following problem: “What is the
area of the largest triangle that can be inscribed in a circle of radius
r?” Set up the problem to identify the function you are optimizing.
Identify all of the variables that appear in the equation. Identify all
of the constraints. Are there enough constraints for you to solve this
problem using the techniques introduced here? Explain.

Exercise 4. Fix a, b > 0. What is the area of the largest isosceles
triangle that can be inscribed in the ellipse given by the level set

equation x2

a2 + y2

b2 = 1?

Exercise 5. Using Newton’s method of approximation, find x 2 R
such that e�x = x to six decimal points.

Exercise 6. Does Newton’s method work for finding the root of R 3
x 7! arctan(1 + x)� x? If yes, find it. Else, explain.

Exercise 7. Apply Newton’s method to find x 2 (0, 1) such that
x2 tan(x) = x.

Exercise 8. Let S be the set of di↵erentiable functions, let D be the
assignment sending a di↵erentiable function to its derivative, let R
be the range of D and let I be a choice of right inverse for D, i.e.
I : R ! S satisfies D � I = idR (one does this by making a choice for
the antiderivative for any function in R).

i. Let f, g 2 R. Prove I(f + g)�
�
I(f) + I(g)

�
is some constant.

ii. Let f 2 R and c 2 R. Prove I(cf)� cI(f) is a constant.

Hint: Apply D to both of these equations and use linearity.

Exercise 9. Fix a,m > 0. Find an equation relating a and m such
that the graphs of f(x) := eax and g(x) := mx intersect in exactly
one point. Can you use Newton’s method to find the point x at which
these two functions intersect? If so, express x as a function of a. If
not, do so when a = 1.

Exercise 10. If the force on a particle of mass m is F = k for some
constant k, and if the initial position is x0 and the initial velocity is
v0, find the displacement x(t) as a function of time t. Describe one
situation where the force is constant in this way.

Exercise 11. Find the general antiderivatives of the following func-
tions. If fk denotes the function given, Fk denotes its antiderivative.
Then find the exact antiderivative if the value of the antiderivative is
given at the point specified.

i. R 3 x 7! f1(x) := |x|. F1(2) = 5.

ii. R 3 x 7! f2(x) :=
p

|x|. F2(1) = 1.

iii. R 3 x 7! f3(x) :=

(
0 if x = 0

x/|x| otherwise
. F3(0) = �1.

iv. R 3 x 7! f4(x) := x cos(x2). F4(0) = 1.

v. R 3 x 7! f5(x) := 0. F5(0) = 17.

For example, if R 3 x 7! f(x) := x and F (1) = 1 then the general

antiderivative is F (x) = x2

2 + C with C an arbitrary constant. The
specific solution is obtained from 1 = F (1) = 1

2 + C so C = 1
2 so the

specific antiderivative is F (x) = x2

2 + 1
2 .

https://youtu.be/-S5GwNe0xXg
https://youtu.be/IVVwFEnmFUk
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Area and distance

1 2 3 4 5 6 7

1
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ma+ c
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>>>><

>>>>: b� a 8>>>>>>><>>>>>>>:

8
<

:m(b� a)

0

To compute the shaded area
under the curve on the left,
we could break up the shaded
trapezoid into two parts and
compute the area of the result-
ing triangle and the rectangle.
Suppose the curve is described
by the line y(x) = mx+ c with
m, b � 0. Suppose we wanted
to know the area under it from
x = a to x = b.

The dimensions of the resulting triangle and rectangle are shown
above. The area is therefore (b � a)(ma + c) + 1

2 (b � a)(m(b � a)) =
1
2m(b2 � a2) + c(b � a). Interestingly, notice that this expression is
the di↵erence of the antiderivative of f(x) = mx + c evaluated at
x = b and x = a. Indeed, the antiderivative is F (x) = 1

2mx2 + cx+C
(where C is an unknown constant) and the area equals F (b) � F (a)
(notice that the constant C gets cancelled). Also notice that the area
under the curve is the area under the curve R 3 x 7! mx plus the
area under the curve R 3 x 7! c between x = a and x = b.

How do we compute areas under curves that are not of the form
y(x) = mx+ c? For example, how can we compute the area under the
curve f(x) = x2 from x = a to x = b? One method is to approximate
the area by shapes for which the area formula takes a particularly
simple form. This occurs for rectangles. Using more rectangles will
provide a more accurate formula. To do this calculation, we will
revisit computing the area under a straight line curve as well.

1 2 3 4

4

8

12

16

0 1 2 3 4

1

2

3

4

0

To compute the area under the straight line curve g(x) := x from
x = a to x = b, set L := b � a and fix n 2 N to be the num-
ber of rectangles we will use. If we demand the width to be the
same for all of them, then they are L/n in width. The bottom
left corners of the rectangles are given by a + kL

n as k varies from
0 to n � 1 while the top left corners are given by the same for-
mula. If we use f(x) := x2, then the top left corners are given by�
a+ kL

n

�2
. The area of a given such rectangle is

�
L
n

� �
a+ kL

n

�
for g

and
�
L
n

� �
a+ kL

n

�2
for f. The sum of the areas of the rectangles is

therefore An(g; a, b) :=
n�1X

k=0

✓
L

n

◆✓
a+

kL

n

◆
=

La

n

n�1X

k=0

1 +
L2

n2

n�1X

k=0

k =

Lan

n
+

L2n(n� 1)

2n2
= L

✓
a+

L

2

✓
n� 1

n

◆◆
. Therefore, lim

n!1
An =

L

✓
a+

L

2

◆
=

b2

2
�a2

2
, which is what we expected. Now, for the f(x) =

x2 curve, we have An(f ; a, b) :=
n�1X

k=0

✓
L

n

◆✓
a+

kL

n

◆2

=
La2

n

n�1X

k=0

1 +

2L2a

n2

n�1X

k=0

k+
L3

n3

n�1X

k=0

k2 =
La2n

n
+
2L2an(n� 1)

2n2
+
L3(n� 1)n(2n� 1)

6n3

so lim
n!1

An(f ; a, b) = La2 + L2a+
L3

3
=

b3

3
� a3

3
.

To compute the area under the graph of the exponen-
tial function from a to b, we apply a similar procedure:

An(exp; a, b) :=
n�1X

k=0

✓
L

n

◆
exp

✓
a+

kL

n

◆
=

Lea

n

n�1X

k=0

⇣
eL/n

⌘k
=

Lea

n

✓
1� eL(n�1)/n

1� eL/n

◆
. To compute the limit lim

n!1
An(exp; a, b),

we will first compute lim
n!1

n(1 � eL/n). For this, it is con-

venient to turn this limit into one involving a continuous
variable so L’Hospital’s rule can be applied. This gives

lim
n!1

n(1 � eL/n) = lim
x!0

1� eLx

x
= lim

x!0

�LeLx

1
= �L. There-

fore, lim
n!1

An(exp; a, b) = �ea(1 � eL) = �ea(1 � eb�a) = eb � ea.

Vicky drove a hovering vehicle from NYC to Boston along a straight
line and her velocity was tracked at all times and is shown on the
graph. At one point during the trip, she passed by a Wendy’s. A few
minutes after passing, she regretted not stopping. She slows down
and reverses direction to pick up some nuggets and two junior bacon
cheeseburgers. Then she proceeds to go towards Boston. What is her
displacement from NYC during the following times?

i. 2 hours

ii. 2 hours and 40 minutes

iii. 3 hours and 20 minutes

20 40 60 80 100 120 140 160 180 200 220 240 260
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�40

�20

0
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40
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80

The definite integral
The previous example shows the importance of signs when computing
areas under curves. If a function is negative over a given interval, then
its area will be assigned a negative value. Let f : [a, b] ! R be a piece-
wise continuous function over an interval with at most finitely many

points of discontinuity. Then lim
n!1

n�1X

k=0

✓
b� a

n
f

✓
a+

k(b� a)

n

◆◆

converges. Its value is called the definite integral of f over [a, b] and

is denoted by
R b
a f(x) dx. a and b are called the limits of integration.

Such a limit might or might not exist for functions that are not
piecewise continuous. In such cases, one can generalize the summation
to allow for rectangles of arbitrary widths and evaluated at arbitrary
points. One then defines the integral by summing the areas for
successively finer partitions and taking the limit as the number of
divisions tends towards infinity.

f

bx4x3x2x1a

!

f

bx8x7x6x5x4x3x2x1a

A function f : [a, b] ! R for which
R b
a f(x) dx converges is called

(Riemann) integrable over [a, b]. It is not easy to identify the class of
functions that are integrable. [Reference: Herb Gross: II.11 The “Def-
inite” Indefinite Integral and Herb Gross: IV.1 The Definite Integral].

https://youtu.be/IVVwFEnmFUk
https://youtu.be/IVVwFEnmFUk
https://youtu.be/EeLD_40wDoU


One of the immediate properties of the integral of an integrable func-
tion f over an interval [a, b] is for any c 2 (a, b), f is integrable

over [a, c] and [c, b] and the integrals are related by
R b
a f(x) dx =

R c
a f(x) dx+

R b
c f(x) dx. It is useful to define

R a
b f(x) dx = �

R b
a f(x) dx

so that interchanging limits reverses the sign of the area. Furthermore,

if g is another integrable function over [a, b] and � 2 R then
R b
a

�
f(x)+

g(x)
�
dx =

R b
a f(x) dx +

R b
a g(x) dx and

R b
a �f(x) dx = �

R b
a f(x) dx.

If f(x)  g(x) for all x 2 [a, b], then
R b
a f(x) dx 

R b
a g(x) dx. If

L  f(x)  M for all x 2 [a, b] for some numbers L,M 2 R, then
L(b� a) 

R b
a f(x) dx  M(b� a).

Sometimes computing the integral from the definition is challenging.
For instance, what is the integral of the function (0,1) 3 x 7! 1

x on
an interval [a, b] with 0 < a < b? Using the definition, it is given by
Z b

a

1

x
dx = lim

n!1

n�1X

k=0

✓
L

n

◆ 
1

a+ kL
n

!
. One option is to approximate

and use midpoints instead of the left endpoint as we have been
doing. The resulting sum for an arbitrary function f would look like

An(f ; a, b) :=
n�1X

k=0

✓
L

n

◆
f

✓
a+

(2k + 1)L

2n

◆
For example, below are

two approximations of
R 3
1

1
x dx.

1 2 3

0.25

0.5

0.75

1

0 1 2 3

0.25

0.5

0.75

1

0

The first one gives 2
3 + 2

5 = 16
15 ⇡ 1.06667 while the second one gives

1
2

�
4
5 + 4

7 + 4
9 + 4

11

�
= 3782

3465 ⇡ 1.09149. The exact value, as we will

derive next week, is
R 3
1

1
x dx = ln(3) ⇡ 1.09861.

Let’s use the midpoint approximation method to approximateR 3
1

p
x dx using 5 rectangles (so n = 5 and L = 3� 1 = 2).

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

0

The sum of the areas of these rectangles is
4X

k=0

✓
3� 1

5

◆s

1 +
(2k + 1)(3� 1)

2(5)
=

✓
2

5

◆3/2 4X

k=0

p
3 + k =

✓
2

5

◆3/2 ⇣p
3 +

p
4 +

p
5 +

p
6 +

p
7
⌘

⇡ 2.79883. Compared to

the actual definite integral, which is (as we will see next week)
2
3

�
33/2 � 13/2

�
⇡ 2.79743, it is a decent approximation.

There are also many other approximation techniques for computing
Riemann sums. Another common one is to use trapezoids instead
of rectangles. All such methods yield the same direct integrals
for Riemann integrable functions. Yet another method mentioned
earlier involves arbitrary partitions. A vastly more general method
re-examines the meaning of “volume” or “area” through the use of
measures. This is covered in a course on measure theory.

Exercises
Exercise 1. Give an example of a piecewise continuous function f :
[0, 1] ! R that is not integrable. Hint: it must have an infinite number
of points at which it is discontinuous.

Exercise 2. Assume 0 < a < b. Using n lower rectangles, compute
the area under the graph of R 3 x 7! x3 between x = a and x = b.

Then, take the n ! 1 limit of your result to compute
R b
a x3 dx. Hint:

n�1X

k=0

k3 =
n2(n� 1)2

4
.

Exercise 3. Assume 0 < a < b. Using n lower rectangles, compute the
signed area under the graph of (0,1) 3 x 7! ln(x) between x = a and
x = b. How does this answer change if you use n midpoint rectangles?
Approximate

R 4
2 ln(x) dx by using 4-midpoint rectangles. Compare

your answer to the actual value
R 4
2 ln(x) dx = �2 + ln(64) ⇡ 2.15889.

Exercise 4. Let a, b 2 R with a < b. If
R b
a ln(x) dx =: A, what is

R b
a ln

�
1

x2018

�
dx in terms of A? What about

R b
a ln(2018x) dx?

Exercise 5. Let a, b 2 R with a < b. If f : R ! R is an integrable
function and c 2 R what should the limits of integration be in the

integral
R ??
? f(x+ c) dx so that

R ??
? f(x+ c) dx =

R b
a f(x) dx?

Exercise 6. Let a > 0. If f is an even integrable function, can the
expression

R a
�a f(x) dx be simplified? If g is an odd integrable function,

what does
R a
�a g(x) dx equal?

Exercise 7. A probability density function (pdf) is a function f : R !

R such that f(x) � 0 for all x 2 R and lim
a!�1
b!1

Z b

a
f(x) dx = 1. Show

that if g is another pdf, then �f + (1 � �)g is a pdf for all � 2 [0, 1].
Such a pdf is called the convex combination of the pdf’s f and g.

Exercise 8. A cannon ball is shot out of a cannon on top of a cli↵ of
height h above sea level with initial velocity v at an angle of ✓ with
respect to the horizontal direction. If g represents the gravitational
acceleration (given by 9.81 meters per second), than the acceleration
as a function of time for the cannon ball is a(t) = �g. Using the initial
conditions given, derive a formula for the vertical displacement of the
cannon ball as a function of time.

Exercise 9. Using an approximation from the first week of class,
compute

R 1
0

p
1 + x2 dx. Hint: the graph of [0, 1] 3 x 7!

p
1 + x2

describes one quarter of a circle. In the first week, we computed the
area of a polygon inscribed inside a circle. As the number of sides
of this polygon increases, its area tends towards a number. Compare
that calculation to this problem.

Exercise 10. Using the midpoint approximation method, approx-
imate

R 1
�1 exp(�x2) dx using n = 5 rectangles. Do the same for

R 2
�2 exp(�x2) dx using n = 9 rectangles. Write a program to compute
the area for an arbitrary number of rectangles. Then, do the same forR 2
�2 exp(�x2) dx using n = 27 rectangles. How close is your answer to

p
⇡
2 ? Write a general mathematical formula for the midpoint formula
using n rectangles for

R a
�a exp(�x2) dx given an arbitrary a > 0.

Exercise 11. Let f : [a, b] ! R be a continuous function. Define
g : [a, b] ! R by [a, b] 3 x 7! g(x) :=

R x
a f(x0) dx0 (the variable x0 is

used to distinguish it from the limits of integration). Is g di↵erentiable
on (a, b)? To check this, write the di↵erence quotient from the defi-
nition of the derivative, i.e write the formula for g0(x). Simplify this

di↵erence quotient by using the rule
R b
a =

R c
a +

R b
c for a < c < b. Ar-

gue why the numerator of this quotient is approximately ✏f(x). Prove
g0(x) = f(x). This is an important exercise and illustrates a surpris-
ing relationship between integrals and derivatives. It is one of the
fundamental theorems of calculus.
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The Fundamental Theorem of Calculus
Based on the computations from last week, we noticed a surprising

“coincidence.” Namely, if f : [a, b] ! R is integrable and F : [a, b] ! R
is any antiderivative of f, then

R b
a f(x) dx = F (b) � F (a). This is

more than a coincidence. It is a fundamental fact of calculus that

relates rates of change to areas/distances. It is so important it is

called the Fundamental Theorem of Calculus. It actually has two

forms which together show that di↵erentiation and integration are in

some sense inverses of each other (though technically, they aren’t—we

will explain exactly what we mean soon).

Theorem 1. Let f : [a, b] ! R be continuous. Then the function
[a, b] 3 x 7! g(x) :=

R x
a f(x) dx is continuous and is di↵erentiable

when restricted to (a, b). In fact, its derivative is given by g0(x) = f(x)
for all x 2 (a, b).

Proof. The proof of this is a direct consequence of the definition of

the derivative and the properties of the integral. We will not prove

this here rigorously but instead will give the idea. To prove continuity

of g at c, one must show lim
x!c

Z x

a
f(x0

) dx0
=

Z c

a
f(x0

) dx0. First,

consider the limit from the right. Proving continuity from the right is

equivalent to proving lim
�!0

Z c+�

a
f(x0

) dx0 �
Z c

a
f(x0

) dx0
= 0, but the

left equals lim
�!0

Z c+�

c
f(x0

) dx0
by properties of the integral. Since f

is continuous, its value in the small range [c, c + �] is approximately

f
�
c+ �

2

�
. Hence, lim

�!0

Z c+�

c
f(x0

) dx0 ⇡ lim
�!0

Z c+�

c
f

✓
c+

�

2

◆
dx0

=

lim
�!0

f

✓
c+

�

2

◆Z c+�

c
dx0

= lim
�!0

f

✓
c+

�

2

◆
� = 0. A similar argument

applies to the limit on the left. To prove di↵erentiability of g at c,
note that the di↵erence quotient numerator is given by g(c + ✏) �
g(c) =

R c+✏
a f(x0

) dx0 �
R c
a f(x0

) dx0
=

R c+✏
c f(x0

) dx0. For a similar

reason to the above, this integral is approximately given by f
�
c+ ✏

2

�
✏.

Hence, the di↵erence quotient looks like g0(c) = lim
✏!0

g(c+ ✏)� g(c)

✏
⇡

lim
✏!0

f
�
c+ ✏

2

�
✏

✏
= f(c). ⌅

Theorem 2. Let f : [a, b] ! R be and integrable function and let F :

[a, b] ! R be any antiderivative of f, then
R b
a f(x) dx = F (b)� F (a).

Proof. Set [a, b] 3 x 7! g(x) :=
R x
a f(x) dx and apply the previous

theorem. ⌅
There are so many consequences of this theorem. The most immediate

one is the ability to compute Riemann sums that were too di�cult to

compute explicitly. Here are several examples.

i.
R b
a

1
x dx = ln(b)� ln(a) = ln

�
b
a

�

ii.
R b
a

p
x dx =

2
3x

3/2
���
a

b
=

2
3

�
b3/2 � a3/2

�

iii.
R b
a sin(x) dx = � cos(x)

���
a

b
= cos(a)� cos(b)

iv.
R b
a xn dx =

xn+1

n+1

���
a

b
=

1
n+1

�
bn+1 � an+1

�

In the above, we have used the notation F (x)
���
a

b
:= F (b)� F (a).

Another consequence is the following. Suppose a, b : R ! R
are di↵erentiable and f : R ! R is integrable and con-

tinuous (we are used to writing a and b as constants, but

they are now functions). Let F denote an antiderivative

of f. Then
d
dx

R b(x)
a(x) f(y) dy =

d
dx

�
F (b(x)) � F (a(x))

�
=

F 0
(b(x))b0(x) � F 0

(a(x))a0(x) = f(b(x)) � f(a(x)). This is a

sort of generalized fundamental theorem of calculus, but it is really a

consequence of it and the chain rule.

The substitution rule is the chain rule
Theorem 3. Let g : [a, b] ! [c, d] be a di↵erentiable function whose
range is [c, d] and let f : [c, d] ! R be an integrable function. ThenZ b

a
f
�
g(x)

�
g0(x) dx =

Z g(b)

g(a)
f(y) dy.

Proof. If f is continuous and F denotes an antiderivative of f, thenR b
a f

�
g(x)

�
g0(x) dx =

R b
a (F � g)0(x) dx = (F � g)(b)� (F � g)(a) =

R g(b)
g(a) f(y) dy showing this theorem is a consequence of the Chain Rule

and the Fundamental Theorem of Calculus. ⌅
A natural question might be why aren’t the limits of integration on

the right c and d, namely why doesn’t it say
R d
c f(y) dy? Consider the

following example illustrating the generic situation.

g

a b

g(a)

g(b)

c

d

Notice that the integration actually proceeds in several steps de-

pending on how g increases and decreases over its domain [a, b]:R d
g(a) +

R c
d +

R g(b)
c . The middle integral backtracks. To see how all these

integrals simplify, break each of them into parts:
R d
g(a) +

R c
d +

R g(b)
c =

R g(b)
g(a) +

R d
g(b) +

R g(b)
d +

R g(a)
g(b) +

R c
g(a) +

R g(a)
c +

R g(b)
g(a) =

R g(b)
g(a) . In other

words, all of the other intervals cancel and we are left with [g(a), g(b)].

Let us work through several examples.

i. For
R b
a x

p
1 + x2 dx, set g(x) = 1+x2

and f(y) =
p
y so g0(x) = 2x

and
R b
a x

p
1 + x2 dx =

1
2

R b
a f(g(x))g0(x) dx =

1
2

R 1+b2

1+a2

p
y dy =

1
3y

2/3
���
1+b2

1+a2
=

1
3

�
(1 + a2)3/2 � (1 + b2)3/2

�
.

ii. For
R b
a

�
sin(x)

�5
cos(x) dx, set g(x) = sin(x) and f(y) = y5 so

g0(x) = cos(x) and
R b
a cos(x)

�
sin(x)

�5
dx =

R b
a f

�
g(x)

�
g0(x) dx =

R sin(b)
sin(a) y

5 dy =
1
6y

6
���
sin(b)

sin(a)
=

1
6

⇣�
sin(b)

�6 �
�
sin(a)

�6⌘
.

iii. To compute
R b
a cos

2
(x) dx, first note that cos(2x) = cos

2
(x) �

sin
2
(x) = cos

2
(x) �

�
1 � cos

2
(x)

�
= 2 cos

2
(x) � 1 so cos

2
(x) =

1
2 (cos(2x) + 1) . Hence,

R b
a cos

2
(x) dx =

R b
a

1
2 (cos(2x) + 1) dx =

1
2

R b
a cos(2x) dx+ 1

2

R b
a dx =

1
2

R b
a cos(2x) dx+ 1

2 (b�a). To compute

the first integral, set g(x) = 2x and f(y) = cos(y). Then g0(x) = 2

and
1
2

R b
a cos(2x) dx =

1
4

R b
a f

�
g(x)

�
g0(x) dx =

1
4

R 2b
2a cos(y) dy =

1
4

�
sin(2b)� sin(2a)

�
. Putting these together gives

R b
a cos

2
(x) dx =

1
4

�
sin(2b)� sin(2a)

�
+

1
2 (b� a).

iv. For a, b 2 (0,1) with a < b, to evaluate
R b
a

(ln(x))4

x dx =, set

g(x) = ln(x) and f(y) = y4 so g0(x) =
1
x and

R b
a

(ln(x))4

x dx =
R b
a f

�
g(x)

�
g0(x) dx =

R ln(b)
ln(a) y

4 dy =
1
5

�
(ln(b))5 � (ln(a))5

�
.

v. For
R b
a sin(x)ecos(x) dx, set g(x) = cos(x) and f(y) = ey so g0(x) =

� sin(x). Then
R b
a sin(x)ecos(x) dx = �

R b
a f

�
g(x)

�
g0(x) dx =

�
R cos(b)
cos(a) e

y dy = ecos(a) � ecos(b).

The notation
R
f(x) dx will be used (without limits of integration)

to denote an antiderivative of f. In particular, it must include an

integration constant. For example,
R
x dx =

1
2x

2
+ C, where C is a

constant. Furthermore, we often us the variable u to denote g. For
example in

R
x
p
1 + x2 dx, set u = 1 + x2

so that du = 2x. ThenR
x
p
1 + x2 dx =

1
2

R p
u du =

1
3u

3/2
+ C =

1
3 (1 + x2

)
3/2

+ C. This
facilitates computations. This is sometime called u-substitution.



The u-substitution rule can be used to simplify other integrals that

cannot be immediately computed using the rule.

i. For example, to compute
R
(1 + x2

)
1/2x5 dx, set u = 1 +

x2
so that du = 2xdx and x2

= u � 1. Then
R
(1 +

x2
)
1/2x5 dx =

R
(1 + x2

)
1/2x4x dx =

1
2

R
u1/2

(u � 1)
2 du =

1
2

R �
u5/2 � 2u3/2

+ u1/2
�
du =

1
2

�
2
7u

7/2 � 4
5u

5/2
+

2
3u

3/2
�
+ C =

1
7 (1 + x2

)
7/2 � 2

5 (1 + x2
)
5/2

+
1
3 (1 + x2

)
3/2

+ C.

ii. As another example, consider
R

x2 dx
(3�5x)2 . Setting u = 3 � 5x

we have x =
3�u
5 together with du = �5dx and dx =

� 1
5du. The integral then becomes

R
x2 dx

(3�5x)2 = � 1
5

R �
3�u
5

�2 du
u2 =

� 1
125

R �
9
u2 � 6

u + 1
�

du = � 1
125

�
� 9

u � 6 ln(u) + u
�
+ C =

� 1
125

⇣
� 9

3�5x � 6 ln(3� 5x) + 3� 5x
⌘
+ C.

Warning: When applying u-substitution, you might apply it di↵er-

ently than your neighbor and your answers may di↵er. However, your

two answers should only di↵er by an overall integration constant.

Sometimes, clever tricks make computing integrals easier. Also, being

able to identify which substitutions will work takes a lot of practice.

i Let f : [0,⇡] ! R be continuous. First note thatR ⇡
0 xf(sin(x)) dx =

⇡
2

R ⇡
0 f(sin(x)) dx. To see this, set u = ⇡ � x.

Then du = �dx and x = ⇡ � u so that
R ⇡
0 xf(sin(x)) dx =R 0

⇡ (⇡ � u)f(sin(⇡ � u))(�du) =
R 0
⇡ (⇡ � u)f(sin(u))(�du) =

⇡
R ⇡
0 f(sin(u)) du �

R ⇡
0 uf(sin(u)) du. Notice that the right in-

tegral is the same as what we initially started with since u is

just a dummy variable. Solving for this gives
R ⇡
0 xf(sin(x)) dx =

⇡
2

R ⇡
0 f(sin(x)) dx.

ii This identity can be used to solve some complicated integrals such

as
R ⇡
0

x sin(x)
1+cos2(x) dx. Since 1+ cos

2
= 2+ sin

2, this integral becomes
R ⇡
0

x sin(x)
2�sin2(x) dx. If we define f(y) :=

y
2�y2 , this integral is of the

form
R ⇡
0 xf(sin(x)) dx. By the preceding identity, our integral be-

comes
R ⇡
0

x sin(x)
1+cos2(x) dx =

⇡
2

R ⇡
0 f(sin(x)) dx =

⇡
2

R ⇡
0

sin(x)
1+cos2(x) dx.

To proceed, set u = cos(x). Then du = � sin(x)dx and the in-

tegral becomes
R ⇡
0

x sin(x)
1+cos2(x) dx = �⇡

2

R �1
1

du
1+u2 =

⇡
2

�
arctan(1) �

arctan(�1)
�
=

⇡
2

�
⇡
4 +

⇡
4

�
=

⇡2

4 .

Separation of variables
A substance decays at a rate proportional to itself. If the initial

amount of the substance is A, find an equation describing the amount

of the substance as a function of time. To solve this, let x denote the

substance and let t denote time. The initial sentence says
dx
dt = �kx(t)

with k some positive constant (the reaction constant). To find x(t), a
useful trick is to treat dx and dt as separate measures and move all

x’s to one side and t’s to the other. This gives
dx
x = �kdt. Integrating

both sides gives
R

dx
x = �k

R
dt. Performing these antiderivatives

gives ln(x) = �kt + c, where c is some integration constant. Solving

for x gives x(t) = e�kt+c
= Ce�kt, where C = ec is just another way

of rewriting the constant of integration. Since x(t = 0) = A, this
lets us solve for C. In fact, A = C so x(t) = Ae�kt. Notice that this

solution is reasonable since the amount of the substance is decreasing

as a function of time. Furthermore, initially, the decay is quick and

then it slows down as the amount of the substance decreases.

Recall from Week #07 the di↵erential equation describing the von

Bertalan↵y growth equation given by
dL
dt =

a
3 � b

3L = k(L1 � L),
where k :=

b
3 and L1 :=

a
b . By separating variables, this be-

comes
dL

L�L1
= �kdt. Integrating gives ln(L � L1) = �kt + c.

Exponentiating gives L(t) � L1 = Ce�kt. If the initial size of the

organism is L0, this gives the constraint L0 � L1 = C. Hence

L(t) = (L0 � L1)e�kt
+ L1 = L0e�kt

+ L1(1 � e�kt
). The solution

is consistent with what we would expect. The organism grows rather

quickly initially and then continues to grow until it reaches its largest

size asymptotically.

Exercises
Exercise 1. Compute the following integrals.

i.
R b
a

dx
1+2x+x2 .

ii. For a, b 2
�
�⇡

2 ,
⇡
2

�
and a < b, evaluate

R b
a

exp(tan(x))
cos2(x) dx.

iii. For a, b 2
�
�⇡

2 ,
⇡
2

�
and a < b, evaluate

R b
a

2x exp(tan(x2))
cos2(x2) dx.

iv.
R b
a sin

2
(x) dx.

v.
R b
a xe3x

2

dx.

vi.
R b
a

dx
5+4x+x2 .

Exercise 2. Let f : R ! R be continuous and integrable. Define

g(x) :=
R x
0 f(y) dy. Describe the critical points of g. Identify when the

critical points are local minima and maxima.

Exercise 3. Let f : R ! R be a continuous and integrable function

and let c 2 R. For each n 2 N, let �n : R ! R be the function

defined by �n(x) :=

(
2n if � 1

n  x  1
n

0 otherwise
. Draw the graph of �n for

n = 1, 2, 3 and 3. Compute
R1
�1 �n(x) dx. Prove

R1
�1 f(x)�n(x) dx =

2n
R 1/n
�1/n f(x) dx. What is lim

n!1

Z 1

�1
f(x)�n(x) dx? The sequence of

functions �1, �2, �3, . . . is a sequence of functions converging to the

Dirac delta “function” (technically, the Dirac delta distribution).

Exercise 4. The work done on a gas during a process that changes

the volume but keeps the gas at constant temperature is given by

W = �
R V2

V1
P (V ) dV, where P (V ) is the pressure of the gas assumed

to be a function of the volume. Compute the work under such a process

when the volume of the gas changes from V1 to V2 under the following

assumptions on the gas.

i. For the ideal gas model, the pressure is given by P (V ) =
nRT
V ,

where n is the number of moles of the gas, R is the ideal gas

constant, and T is the temperature (in Kelvin). For reference

(not needed to solve this part of this problem), R = 8.3144598
Joules per mole per Kelvin (Jmol

�1
K

�1
).

ii. For the Van der Walls gas model, the pressure is related to the

volume V by

⇣
P +

an2

V 2

⌘
(V � bn) = nRT, where a and b are

positive constants and depend on the gas one is working with (the

constants are obtained empirically). In Week #09, you were asked

to solve this equation for P. The result is P (V ) =
nRT
V�bn � an2

V 2 .

iii. For the Redlich-Kwong gas model, the pressure is related to the

volume V by P =
nRT

V�Bn � An2

V (V+Bn)
p
T
, where A and B are pos-

itive constants and depend on the gas one is working with (the

constants are obtained empirically).

Exercise 5. Solve the di↵erential equation
dx
dt = x2

by separation of

variables with the initial condition x(t = 0) = �1.

Exercise 6. Solve the di↵erential equation
dx
dt = �tx by separation

of variables with the initial condition x(t = 0) =

q
2
⇡ . This solution is

a type of Gaussian distribution.

Exercise 7. A Schwarzschild black hole emits Hawking radiation at a

rate proportional to the inverse square of its mass
dm
dt = � ↵

m2 , where

↵ =
~c4

15360⇡G2 is a constant (~ is Planck’s reduced constant, c is the

speed of light, and G is Newton’s gravitational constant) and m is the

mass of the black hole. As a result, the mass of the black hole decreases

as a function of time. If the initial mass of the black hole is m0, find
the equation describing its mass m(t) as a function of time. When has

all of the mass of the black hole evaporated? For a black hole whose

initial mass is the solar mass, what is the evaporation time? Compare

this to the current age of the universe. What is the significance of this

result?
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Area between curves
We can think of the definite integral as computing the area between
the graph of a function and the function whose value is 0 for all inputs
(the x-axis). More generally, we can ask to compute the area between
the graphs of two functions. If f, g : [a, b] ! R are two integrable

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3
functions, the (signed) area be-
tween their graphs is just the inte-
gral of the di↵erence between their
graphs. In other words, The area
between the graphs of f and g isR b
a

�
f(x)� g(x)

�
dx. Note that the

order of which function has the pos-
itive sign matters. The other wayR b
a

�
g(x)� f(x)

�
dx would give the

area between the graphs of g and
f. If one is only interested in the
magnitude of the area (ignoring the
signs if one graph is above the

other), then this area is given by
R b
a |f(x)� g(x)| dx.

Let n 2 N. The area between [0, 1] 3 x 7! x1/n and [0, 1] 3 x 7! xn

is given by
R 1
0

�
x1/n � xn

�
dx = n

n+1x
(n+1)/n � 1

n+1x
n+1

���
1

0
= n�1

n+1 .

Then lim
n!1

Z 1

0

⇣
x1/n � xn

⌘
dx = lim

n!1

1� 1
n

1 + 1
n

= 1.

�1 1 2

�1

1

0
x

y
One can also use integration to
find the area between level sets.
The level sets shown on the left
are those of x2 + y2 = 1 and
(x � 1)2 + y2 = 1. One can do
this by finding the area of the top
part first and then doubling. The
top blue curve is the graph of the
function [0, 1

2 ] 3 x 7!
p
1� x2.

The top red curve is given by
[0, 1

2 ] 3 x 7!
p

1� (x� 1)2.

The area of the top half splits into two terms
R 0
�1

p
1� x2 dx +

R 1/2
0

⇣p
1� x2 �

p
1� (x� 1)2

⌘
dx. Set x = cos ✓ or the first

integral and set x � 1 = cos ✓ for the second part of the sec-
ond one. After combining like terms, our integrals become

�
R ⇡/3
⇡ sin2(✓) d✓ +

R 2⇡/3
⇡ sin2(✓) d✓ =

R 2⇡/3
⇡/3 sin2(✓) d✓. To com-

pute this, recall cos(2✓) = cos2(✓) � sin2(✓) = 1 � 2 sin2(✓)

so sin2(✓) = 1�cos(2✓)
2 . Therefore, this integral becomes

R 2⇡/3
⇡/3 sin2(✓) d✓ = 1

2

R 2⇡/3
⇡/3 (1� cos(2✓)) d✓ = 1

2

�
2⇡
3 � ⇡

3

�
�

1
4

�
sin

�
4⇡
3

�
� sin

�
2⇡
3

��
= ⇡

6 � 1
4

⇣
�

p
3
2 �

p
3
2

⌘
= ⇡

6 +
p
3
4 . Hence, the

area is twice this, which is ⇡
3 +

p
3
2 .

Let f : R2 ! R be defined by the
formula f(x, y) := x2 � xy � y2.
The level set f�1({1}) is drawn
on the graph. To compute the
shaded area, first solve for the
curves as functions in the simplest
way possible. This is achieved
by solving for x as a function of
y. The solutions are R 3 y 7!
x±(y) = y

2 ±
p

4+5y2

2 . The dif-
ference of these two functions is
x+(y)� x�(y) =

p
4 + 5y2.

�2 �1 1 2

�2

�1

1

2

0
x

y

The area is therefore
R 1
�1

p
4 + 5y2 dy. It will be convenient to

note that this integral equals
R 1
�1

p
4 + 5y2 dy = 2

R 1
0

p
4 + 5y2 dy.

This integral can be computed by substituting u =
p
5
2 y giving

8p
5

Rp
5/2

0

p
1 + u2 du. Then, substituting u = sinh(v) gives =

8p
5

R sinh�1(
p
5/2)

0 cosh2(v) dv = 4p
5

R sinh�1(
p
5/2)

0 (1 + cosh(2v)) dv =
4p
5

�
sinh�1(

p
5/2) + 1

2 sinh(2 sinh
�1(

p
5/2))

�
=

4p
5

�
sinh�1(

p
5/2) + sinh(sinh�1(

p
5/2)) cosh(sinh�1(

p
5/2))

�
=

4p
5

⇣
sinh�1(

p
5/2) +

p
5
2

q
1 + 5

4

⌘
= 4p

5
sinh�1

⇣p
5
2

⌘
+ 3. We

used several identities above including 1 + sinh2 = cosh2,
cosh2(v) = 1

2 (cosh(2v) + 1) , sinh(2w) = 2 sinh(w) cosh(w), and

cosh(sinh�1(z)) =
p
1 + z2.

Volumes and Surface Area
Let f : [a, b] ! R be a continuous function that is strictly positive
or strictly negative. The surface of revolution of f is the surface
obtained from rotating the graph of f about the x-axis (the domain)
and viewing [a, b]⇥R as inside of [a, b]⇥R⇥R. The circumference of
this surface at x 2 [a, b] is given by 2⇡f(x) while the area of the disc
enclosed by this surface of revolution at x is ⇡f(x)2. The volume of

the enclosed region is therefore ⇡
R b
a f(x)2 dx. To compute the surface

area, we assume in addition that f is di↵erentiable and let us write
f(x) = y(x). If the surface of revolution is broken up into infinitesimal
cylinders, the radius of these cylinders is f(x) while the length is (by

Pythagorean’s theorem)
p

dx2 + dy2 =

r
1 +

⇣
dy
dx

⌘2
dx. Therefore,

the surface area is 2⇡
R b
a f(x)

p
1 + f 0(x) dx.

For example, fix r > 0. Then [�r, r] 3 x 7!
p
r2 � x2 has

surface of revolution a sphere of radius r. The volume is
⇡
R r
�r

�
r2 � x2

�
dx = ⇡

�
2r3 � 2

3r
3
�

= 4⇡r3

3 . The surface area is

2⇡
R r
�r

p
r2 � x2

q
1 + x2

r2�x2 dx = 4⇡r2.

Exercises
Exercise 1. Let a and b be the points of intersection of the graphs
of sin and cos depicted in the graph below. Compute the area (the
shaded region) between the two curves between these two intersection
points.

sin

cos

a b

Exercise 2. Let m,�, a, b > 0 and suppose b > a. Compute the area
between the graphs of R 3 x 7! g(x) := e�x and R 3 x 7! f(x) := mx
on the interval [a, b]. What should the relationship between m and �
be so that a part of the graph of f is above the graph of g? If this
relationship is satisfied, suppose that a is the first time f intersects g,
i.e. f(a) = g(a), and suppose that b is the second time f intersects g,
i.e. f(b) = g(b). Find an expression for the area involving only a, b,m.
Can you find an expression for the area involving only m,�?

Exercise 3. Consider the graphs
of tan(x) and � tan(x) on their do-
mains. Is the diamond-shaped area
(shaded on the right) between these
curves finite? If so, compute it. Oth-
erwise, prove the area is infinite.

tan

� tan

1 2 3

�3
�2
�1

1
2
3

Exercise 4. Let a > 1. Gabriel’s horn is the surface of revolution
obtained from the graph of [1, a] 37! 1

x by rotating it about the x axis.
Compute the surface area of the resulting surface of revolution (do not
include the “caps” at the two ends). Compute the volume enclosed by
this surface. Then, compute their limits as a ! 1. Which, if any, of
the resulting limits are finite? This result shows us that sometimes it
is possible to bake a cake but it might not be possible to frost it.


