

f	
Let $A \xrightarrow{f} B$ be a function. The <u>graph</u> of f is the subset of $A \times B$ given by $\Gamma(f) := \{(a, f(a)) : a \in A\}$. $\overline{\Gamma}$ is the Greek letter "Gamma."	Exercises
For the vending machine function from above, the graph is the list of elements in $X \times Y$ given by $\{(A1, \text{Snickers}), (A2, \text{Snickers}), (A3, \text{Cheetos}), (B1, \text{M\&M's}), \dots \}$. The graph of $\mathbb{R} \setminus \{0\} \ni x \mapsto \frac{1}{x}$ can be visualized by drawing two coordinate axes by	Exercise 1. Fix a positive number r and a positive integer $n \ge 3$. Find the area of a regular n -gon whose distance from the center to any one of its vertices is r . For example, for $n = 3$, the regular 3-gon is an equilateral triangle and its area is $\frac{3\sqrt{3}}{4}r^2$. For $n = 4$, the shape is a square and its
viewing the first element x in the ordered pair	area is $2r^2$. What do you notice as <i>n</i> increases?
$(x, \frac{1}{x})$ along the horizontal axis and viewing the second element along the vertical axis. $\cdots \qquad \diamond \cdots \rightarrow \Rightarrow$ The point $(0,0)$ has been circled to indicate that the function is not defined at $0 \in \mathbb{R}$. We often conflate a function with its graph but	Exercise 2. Is the absolute value function $ \cdot : \mathbb{R} \to \mathbb{R}$ onto? Is it one-to-one? Is it invertible? How about the absolute value function restricted to the domain and codomain given by $[0, \infty)$, i.e. $ \cdot : [0, \infty) \to [0, \infty)$?
please be aware that they are different. We often use the horizontal axis to indicate the source (domain) of the function and the vertical axis for the target (acdomain)	Exercise 3. What is the largest subset $A \subseteq \mathbb{R}$ such that the function $A \ni x \mapsto \frac{1}{1-x^2}$ is well-defined?
Let A, B , and C be sets and let $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ be two functions. The <i>composition</i> of f followed by q , written as $q \circ f$, is the function	Exercise 4. What is the image of $\mathbb{R} \ni x \mapsto x+5?$ What is the inverse of this function? Be sure to identify the source of the inverse as well as the target. How about for the function $\mathbb{R} \ni x \mapsto 5x$?
A $\xrightarrow{g \circ f} C$ defined by $A \ni a \mapsto g(f(a))$. You might wonder why the composition is written as $g \circ f$ instead of $f \circ g$. The reason is because for any function $h: X \to Y$ when we plug in an element $x \in X$ to the function h , we write $h(x)$ instead of $(x)h$ —we place the input x on the right. For this reason, it is preferable to write the arrows from right to left, i.e. write $Y \stackrel{h}{\leftarrow} X$ so that $Y \ni h(x) \leftrightarrow x \in X$. Another	Exercise 5. For which natural numbers $n \in \mathbb{N}$ is the function $\mathbb{R} \ni x \xrightarrow{p_n} x^n \in \mathbb{R}$ invertible? For these values of n , find the inverse of p_n . For the values $m \in \mathbb{N}$ for which p_m is not invertible, explain why. For example, is p_m not one-to-one? Is p_m not onto? Sketch the graph of p_m for various values of m on the domain $[-1, 1]$. What do you notice happens as m increases? Try to sketch a graph of the limit of these functions $f := \lim p_m$ as m increases on the domain $[-1, 1]$.
Notice that when we write our arrows from right to left, composition is just concatenation of symbols.	Exercise 6. Using the notation from the previous exercise, let $m \in \mathbb{N}$ be a value for which p_m is not invertible. Let $q_m : [0, \infty) \to [0, \infty)$ be
Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $\mathbb{R} \ni x \mapsto f(x) := x^2$ and let $g : \mathbb{R} \to \mathbb{R}$ be given by $\mathbb{R} \ni y \mapsto g(y) := \cos(y)$. Both the compositions $g \circ f$ and $f \circ g$ are defined, but they are different. These two functions are given by $\mathbb{R} \ni x \mapsto g(f(x)) = \cos(x^2)$ and $\mathbb{R} \ni y \mapsto f(g(y)) = \cos^2(y)$, respectively.	defined by the same formula as p_m (but with its domain and codomain slightly alterred). Is q_m invertible now? Explain. Exercise 7. Let $C \notin B$ and $B \notin A$ be invertible functions with inverses given by $C \xrightarrow{f^{-1}} B$ and $B \xrightarrow{g^{-1}} A$, respectively. Is the compo-
A function $A \xrightarrow{f} B$ is <i>invertible</i> (or "reversible" in English) iff there exists a function $A \xleftarrow{g} B$ such that $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$. Due to this and the fact that if such a g exists, it is unique, we often denote g by $g = f^{-1}$. f^{-1} is called the <i>inverse</i> of f. The meaning	sition $C \xleftarrow{f \circ g} A$ invertible? If so, find the inverse of $f \circ g$. If not, find an example of two functions f and g that are both invertible but $f \circ g$ is not invertible (such an example is called a <u>counter example</u> because it would provide an example of something contradicting the claim).
of an invertible function is more easily understood if f is thought of as an operation. f is invertible means there is another operation that can undo f , and this means that there is an operation g such that applying f and then g gets you back to where you started (and similarly if you apply g first and then f). It is a theorem that a	Exercise 8. Let $f : \mathbb{R} \to \mathbb{R}$ be an invertible function. Explain why the graph of f^{-1} is the reflection of the graph of f through the graph of the identity function (this is the line $\{(x,x) : x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$). Your explanation should be <i>independent</i> of the function f you choose!
function f is invertible if and only if it is one-to-one and onto. Recall, a function $A \xrightarrow{f} B$ is <u>onto</u> iff for every $b \in B$ there exists an $a \in A$ such that $f(a) = b$ and f is <u>one-to-one</u> iff $f(a_1) = f(a_2)$ implies $a_1 = a_2$. [Reference: Herb Gross I.3. Inverse Functions].	Exercise 9. Let $D \xleftarrow{f} C \xleftarrow{g} B \xleftarrow{h} A$ be a triple of composable func- tions between sets. The composition, as defined in these notes, has only been defined for a <i>pair</i> of functions. Therefore, one can first form the composition $D \xleftarrow{f \circ g} B \xleftarrow{h} A$ and then $D \xleftarrow{(f \circ g) \circ h} A$ to obtain a
The function $\mathbb{R} \ni x \xrightarrow{f} x^3$ is invertible and its inverse is $\mathbb{R} \ni x \xrightarrow{f^{-1}} x^{1/3}$, the cube root of x . Notice that x is a variable and it is used for two different functions. We could have denoted it by anything else. Also notice that the graph of	function from A to D. Another option is to first form the composition $D \stackrel{f}{\leftarrow} C \stackrel{g \circ h}{\leftarrow} A$ and then $D \stackrel{f \circ (g \circ h)}{\leftarrow} A$ to get another, a-priori different, function from A to D. Are these two functions the same, i.e. does $f \circ (g \circ h) = (f \circ g) \circ h$ for all triples of composable functions? When this is true, the composition is said to be <u>associative</u> .
the inverse function f^{-1} is the reflection of the graph of f through the graph of the identity function. The function $\mathbb{R} \ni x \mapsto x^2 \sin(200x) \in \mathbb{R}$ is	Exercise 10. Prove that $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$ for all $x \in \mathbb{R} \setminus \{1\}$. [Hint: compute $(1+x+x^2+\cdots+x^n)(1-x)$.] What's wrong with this formula when $x = 1$?
surjective but not invertible because it is not one-to-one (injective). The function $\mathbb{R} \ni x \mapsto \frac{1}{3}e^x \in \mathbb{R}$ is one-to-one (injective) but not in- vertible because it is not onto. However, the function $\mathbb{R} \ni x \mapsto \frac{1}{3}e^x \in (0, \infty)$ is invertible (because it is onto its codomain).	Exercise 11. Let $a, b, c \in \mathbb{R}$ with $a \neq 0$. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $\mathbb{R} \ni x \mapsto ax^2 + bx + c$. Find the largest subsets $A, B \subseteq \mathbb{R}$ such that the functions $g : (-\infty, -\frac{b}{2a}) \to A$ and $h : (-\frac{b}{2a}, \infty) \to B$ defined by $g(x) := f(x)$ and $h(x) := f(x)$ on their respective domains are invertible. Find g^{-1} and h^{-1} . [Hint: $-\frac{b}{2a}$ is the inflection point for the function f —plot the case $a = 1, b = -2, c = 1$.]

Sequences of roal numbers is a function $\mathbb{N} \to \mathbb{R}$. More generally, the former \mathbb{L} is $d > k > k > k > k > k > k > k > k > k > $	Math 1151Q Honors Calculus I Arthur Parzygnat Week #02	The <u>algebraic limit theorem</u> for sequences is useful when proving that
A sequence of real numbers is a function $\mathbb{N} \to \mathbb{R}$. More generally, if sequence of the law sequences (ine value of d d in \mathbb{N} d stays as, a sequence in A is a function $\mathbb{N} \to \mathbb{R}$. More generally, if sequence \mathbb{N} is a function $\mathbb{N} \to \mathbb{R}$ where $\mathbb{R} \to \mathbb{R}$ is a shorted of q_{10} . Then $(1, 1)$. Then the sequences (ine value $c \in \mathbb{R}$ is the value of $\mathbb{R} \to \mathbb{R}$ is a shorted of q_{10} . Then $(1, 1)$, $\mathbb{R} \to \mathbb{R}$ is a shorted of q_{10} . Then $(1, 1)$, $\mathbb{R} \to \mathbb{R}$ is a shorted of q_{10} and q_{10} as q_{10} are $q_{10} = \mathbb{R}^{10}$. Since $(1, 1)$, $\mathbb{R} \to \mathbb{R}$ is q_{10} and $q_{10} = \mathbb{R}^{10}$, $q_{10} = \mathbb{R}^{10}$	Sequences	certain sequences converge. Theorem 1 Let $a, b \in \mathbb{N}$ be two converges (the value of $a, b \in \mathbb{N}$)
As equally a sequence of the sequence base of a regular noised parameter is a sequence of real mathematical members. Where is a sequence discussion of the sequence of the se	Λ accurate of real numbers is a function $\mathbb{N} \to \mathbb{D}$. More second in the	is denoted by a_n instead of $a(n)$). Then
subset of natural number has is not finite. [Reference: Herb Cress 10] $\lim_{n \to \infty} (2n) = \lim_{n \to \infty} n_n$ ($m \in N$) With Many Versus Infinite) For any natural number $n \ge 3$ the area of a regular resided polygon where distance from the context to any vertex is $r \in (0, \infty)$ is given by reference in real numbers. When r is a specified value, such as $r = 1$. reference in real numbers. When r is a specified value, such as $r = 1$. reference in real numbers. When r is a specified value, such as $r = 1$. reference in real numbers. When r is a specified value, such as $r = 1$. reference in real numbers is a specified value, such as $r = 1$. reference in real numbers is a specified value, such as $r = 1$. reference in real numbers is a specified value, such as $r = 1$. reference in real numbers is end to be a particular value. Can you guess $reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection particular value. Can you guess reflection particular value is reflection partit$	A <u>sequence</u> of real numbers is a function $\mathbb{N} \to \mathbb{R}$. More generally, if A is any set, a sequence in A is a function $B \to A$ where $B \subseteq \mathbb{N}$ is a	(a) $\lim_{n \to \infty} (a_n) = a_n \lim_{n \to \infty} a_n for all a \in \mathbb{D}$
VILL May Verse Infinited VILL May Verse VILL MAY V	subset of natural numbers that is not finite. [Reference: Herb Gross	$ (a) \lim_{n \to \infty} (ca_n) = x \lim_{n \to \infty} a_n \text{ for all } c \in \mathbb{R}, $
For any natural number $n \ge 3$ the area of a regular <i>n</i> -sided polygon $a_1 = \frac{n}{2} \le 0$, $a_2 \ge 0$, $a_3 = \frac{n}{2} \le 0$, $a_2 \ge 0$, $a_3 = \frac{n}{2} \le 0$, $a_4 \ge 0$, $a_5 = \frac{n}{2} \le 0$, $a_5 \ge 0$, $a_5 = \frac{n}{2} \le 0$, $a_5 \ge 0$, $a_5 = \frac{n}{2} \le 0$, $a_5 \ge 0$,	VII.1 Many Versus Infinite]	(b) $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n,$
$a_{n} := \frac{a_{n}^{-1}}{a_{n}} (\frac{2}{a_{n}}) = \frac{a_{n}}{b_{n}} (\frac{a_{n}}{a_{n}}) = \frac{\lim_{n \to \infty}}{\lim_{n \to \infty}} (\frac{a_{n}}{b_{n}}) = \frac{\lim_{n \to \infty}}{\lim_{n \to \infty}} (\frac{a_{n}}{b_{n}}) = \frac{\lim_{n \to \infty}}{\lim_{n \to \infty}} (\frac{a_{n}}{b_{n}}) = \frac{\lim_{n \to \infty}}{a_{n}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}} (\frac{a_{n}}{b_{n}}) = \frac{1}{a_{n}}} (a_{$	For any natural number $n \ge 3$ the area of a regular <i>n</i> -sided polygon whose distance from the center to any vertex is $r \in (0, \infty)$ is given by	(c) $\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$, and
$\begin{array}{c} 3 \\ 3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	$a_n := \frac{nr^2}{2} \sin\left(\frac{2\pi}{n}\right)$. Then $\mathbb{N} \setminus \{1, 2\} \ni n \mapsto a_n := \frac{nr^2}{2} \sin\left(\frac{2\pi}{n}\right)$ defines a sequence of real numbers. When r is a specified value, such as $r = 1$, we can plot the graph of (a part of) this sequence.	(d) $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$, provided that $\lim_{n \to \infty} b_n \neq 0$.
$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\$	3 - 2.60 2.83 2.94	If $b_n = 0$ for some <i>n</i> in part (d), the meaning of $\frac{a_n}{b_n}$ is meant only for sufficiently large <i>n</i> , where $b_n \neq 0$.
$\frac{1}{1 + 1} \lim_{a \to a} (1 - x^{n}) = \frac{1}{1 + x} \left(1 - \lim_{a \to a} x^{n} \right)^{n} = \frac{1}{1 + x} \right)$ by the previous observation, part (a), and part (b) of the algebraic limit theorem. A sequence a: $N \to \mathbb{R}$ is <i>bounded</i> that theorem. A sequence $a: N \to \mathbb{R}$ is <i>bounded</i> theorem. A sequence $a: N \to \mathbb{R}$ is <i>bounded</i> theorem. A sequence $a: N \to \mathbb{R}$ is <i>monotone convergence</i> $a: N \to \mathbb{R}$ is <i>monotone on non-increasing</i> if $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$ as equence $a: N \to \mathbb{R}$ is <i>monotone</i> . If it is the transmitter $A = 0$ is <i>non-decreasing</i> of non-increasing. The <i>monotone onvergence</i> $a: N \to \mathbb{R}$ is <i>monotone</i> if it is sequence. Such a sequence or cours when summing numbers. Fix $x \in \mathbb{R}$. The sequence $a: N \to \mathbb{R}$ is <i>monotone and bounded</i> , then <i>t</i> and <i>a partial</i> sum as tends to infinity is called an <i>partial</i> sum. Frace $\{\mathbb{R}, \mathbb{H} = 1^{n} + 1^{n} + \frac{1}{2^{n} + $	2- • 2.37 2.74 2.90	Suppose that $x \in (-1,1)$. Then $\lim_{n \to \infty} \sum_{k=0}^n x^k = \lim_{n \to \infty} \frac{1-x^n}{1-x} =$
$\begin{vmatrix} - + - + - + - + - + - + - + - + - + - $	1-	$\frac{1}{1-x}\lim_{n\to\infty}(1-x^n) = \frac{1}{1-x}\left(1-\lim_{n\to\infty}x^n\right) = \frac{1}{1-x}$ by the previous observation, part (a), and part (b) of the algebraic limit theorem.
such that $ a_n \leq M$ for all $n \in \mathbb{N}$ as sequence $a: \mathbb{N} \to \mathbb{R}$ is match that $ a_n \leq M$ for all $n \in \mathbb{N}$ as sequence $a: \mathbb{N} \to \mathbb{R}$ is match that $ a_n \leq M$ for all $n \in \mathbb{N}$ as sequence $a: \mathbb{N} \to \mathbb{R}$ is match that $ a_n \leq M$ for all $n \in \mathbb{N}$ as sequence $a: \mathbb{N} \to \mathbb{R}$ is match that $ a_n \leq M$ for all $n \in \mathbb{N}$ as sequence $a: \mathbb{N} \to \mathbb{R}$ is monotone intervalues the random term intervalue of the random intervalue of the sequence as $\mathbb{N} \to \mathbb{R}$ is monotone and bounded, then the graph of this sequence when $x > 1$? What happens when $x = 1$? What happens when $x \in (0, 1)$? The sequence $x \in \mathbb{N} \to \mathbb{R}$ is monotone and bounded, then an earlier exercise, it was chimed that $\sum_{n=0}^{\infty} x^n = \frac{1}{2} + \frac{1}{2} $		A sequence $a: \mathbb{N} \to \mathbb{R}$ is <u>bounded</u> if there exists a real number $M > 0$
These numbers seem to tend to a particular value. Can you guess $\lim_{n \to \infty} u_{n+1} \le u_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} u_n (u_n) = 0$ what it is? [Hint: compute $a_{1} = 0_{000}$] Let $x \in \mathbb{R}$. Then $\mathbb{N} \ni n \to x^n$ is a sequence of real numbers. What is the trapp of this sequence $u \in \mathbb{N} \to \mathbb{R}$ is monotone at $\mathbb{N} \to \mathbb{R}$ is monotone and bounded, then the sequence secures, it was claimed that $\sum_{k=0}^{n} x^k = \frac{1-x^n}{2}$. This gives the appensive $u \in \mathbb{N} \to \mathbb{R}$ is monotone and bounded, then the sequence excars $\mathbb{N} \to \mathbb{N}$ is monotone and bounded, then the sequence excars $\mathbb{N} \to \mathbb{N}$ is monotone and bounded, then the sequence excars $\mathbb{N} \to \mathbb{N}$ is monotone and bounded, then the sequence excars $\mathbb{N} \to \mathbb{N}$ is monotone and bounded, then the sequence excars $\mathbb{N} \to \mathbb{N}$ is monotone and bounded, then the sequence excars $\mathbb{N} \to \mathbb{N} \to \mathbb{N} = \frac{1}{2}$. The sequence $\mathbb{N} \to \mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is a monotone of sums of numbers is called an <u>partial sum</u> , sequence $\mathbb{N} \to \mathbb{N} \to \mathbb{N} = \frac{1}{2}$. The sequence $\mathbb{N} \to \mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is a partial sum as n tends to infinity is called an <u>partial sum</u> , sequence $\mathbb{N} \to \mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$. This gives that $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$. The sequence $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$. The sequence $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$. The sequence $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$. The sequence $\mathbb{N} \to \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \mathbb{N} = \frac{1}{2}$ is $\mathbb{N} \to \mathbb{N} = \mathbb{N}$		such that $ a_n \leq M$ for all $n \in \mathbb{N}$ A sequence $a : \mathbb{N} \to \mathbb{R}$ is
when $x = 1$ Fines 0 models $x = 1$, the 0 models $x = 1$ is a sequence of real number. What is the graph of this sequence when $x > 1$? What happens when $x = 1$? The sequence $a : \mathbb{N} \to \mathbb{R}$ is monotone and bounded, then A special type of sequence occurs when summing numbers. Fix $x \in \mathbb{R}$. If A sequence $N \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges. The sequence $N \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges. The sequence $N \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges. The sequence $N \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges. The sequence $N \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges. The finite of a partial sum as n tends to infinity is called an infinite ordered line of the sequence $N \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges. The definition of a sequence that tends to a limit is as follows. A sequence $n \mapsto a_n \in \mathbb{R}$ converges to $n = b_{n=0}^{n} \frac{1}{k!}$ converges. The definition says that centually the terms in the sequence are so close from this number. A sequence that does non converge to this is the value of the gometric series to a minimute $n = 0$. Such that $ n = a_n $ < eventually mumber that they are at most within a -cdistance $N \Rightarrow N \approx 1$ is obtained by observing what happens to a particular sumber that converges to so more real number $(1, 1, 1)$. Therefore, suppose that $x \notin 0$. The limit of a sequence $\mathbb{N} \Rightarrow n \mapsto n^*$ is converges to is unique. The sequence $\mathbb{N} \Rightarrow n \mapsto n^*$ is converges to is manificated every point in its domain says contains an open interval of points around C_1 . Second, the limit of f at $N \Rightarrow N^*$ is is obtained at every point in the domain of f (we will assume the sequence converges to i when $x \in (-1, 1)$. Therefore, suppose that $x \neq 0$. The desired $ x < 0$ of the equility is converges to i when $x = 1$. Setching out an idea for a proof. Fix $c > 0$. The desire $ x < 0, 0 (x)$ is negative so other $ x < 0, 0 (x)$	These numbers seem to tend to a particular value. Can you guess what it is? [Hint: compute a_{1000}]	$\frac{non-accreasing}{a_{n+1}}$ if $a_{n+1} \geq a_n$ for all $n \in \mathbb{N}$ and $\frac{non-increasing}{monotone}$ if it is
The definition of a sequence that tends to a limit is as follows. All sequence $N \ge n \mapsto 2^n$, $n \ge 1^n \ge 1^n$, $n \ge 1^n \ge 1^n$	Let $\pi \in \mathbb{P}$. Then $\mathbb{N} \supset \pi \mapsto \pi^n$ is a sequence of real numbers. What is	either non-decreasing or non-increasing. The monotone-convergence
What happens when $x \in (0, 1)$? A special type of sequence occurs when summing numbers. Fix $x \in \mathbb{R}$. In an earlier exercise, it was claimed that $\sum_{k=0}^{n} x^{k} = \frac{1+x}{1-x}$. This gives a number for each $n \in \mathbb{N}$. In other words, $\mathbb{N} \ni n \mapsto \sum_{k=0}^{n} x^{k}$ differs a sequence. Such a sequence of sums of numbers is called a <i>partial sum</i> . The limit of a partial sum as <i>n</i> tends to infinity is called an <i>partial</i> sum as <i>n</i> tends to infinity is called an <i>partial</i> sum as <i>n</i> tends to infinity is called an <i>partial</i> sum as <i>n</i> tends to infinity is called an <i>partial</i> sum ($\frac{1}{2}x^{k} = \frac{1}{2}x^{k} = \frac{1}{2}x^{k} = \frac{1}{2}x^{k} = \frac{1}{1+2}x^{k} + \frac{1}{1+2}x^{k$	the graph of this sequence when $x > 1$? What happens when $x = 1$?	theorem for sequences is incredibly helpful in identifying convergent
A special type of sequence occurs when summing numbers. Fix $x \in \mathbb{R}$, if converges. In an earlier exercise, it was claimed that $\sum_{k=0}^{n} x^k = \lfloor \frac{i\pi}{1-x}$. This gives a number for each $n \in \mathbb{N}$. In other words, $\mathbb{N} \ni n \to \sum_{k=0}^{n} x^k$ defines a sequence. Such a sequence of sums of numbers is called a <u>partial sum</u> , real multiply outil learn more about in the second senseters calculus. This particular series is called the <u>geometric series</u> . The definition of a sequence that tends to a limit is as follows. A sequence $\mathbb{N} \Rightarrow n \mapsto \alpha_n \in \mathbb{R}$ converges to a number, $a \in \mathbb{R}$, iff for an real number $e > 0$, there exists an $N \in \mathbb{N}$ such that $ a - a_n < \epsilon$ for all $n \ge N$. The number a is called the <u>limit</u> of the sequence and is denoted by $a = \lim_{max} a_n$. The ϵ is a measure our precision. This is denoted by $a = \lim_{max} a_n$. The ϵ is a measure our precision. This stand to be <u>convergent</u> and a sequence that converges to some real number to a particular number is $(-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} = (-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} = (-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} = (-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} = (-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} = (-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} = (-1, 1)$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto x^n$ is converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, the sequence $\mathbb{N} \ni n \mapsto x^n$. Second if $x \in 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le k \in 0$. The log is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le k \in 0$. The desired intimeduality is equivalent to $1n^{1/2} \le -1$. Find existing gives $n \log(x) \le \log(x)$ is negative so dividing gives $n \log(x) \le \log(x)$ is negative so dividing gives $n \log(x) \le \log(x)$ is negative so dividing gives $n \log(x)$	What happens when $x \in (0, 1)$?	Theorem 2. If a sequence $a : \mathbb{N} \to \mathbb{R}$ is monotone and bounded, then
In an earlier exercise, it was claimed that $\sum_{k=0}^{n} a^{k}$ This gives a number for each $n \in \mathbb{N}$. In other words, $\mathbb{N} \ni n \mapsto \sum_{k=0}^{n} a^{k}$ defines a sequence. Such a sequence of sums of numbers is called a <i>partial sum</i> . The limit of a partial sum as n tends to infinity is called an <i>infinite</i> <i>series</i> , something you will learn more about in the second semester of calculus. This particular series is called the <i>geometric series</i> . The definition of a sequence that tends to a limit is as follows. A real number $e > 0$, there exists an $\mathbb{N} \in \mathbb{N}$ such that $ a - a_n \in \mathbb{R}$ <i>converges</i> to a number, $a \in \mathbb{R}$, iff for any real number $e > 0$, there exists an $\mathbb{N} \in \mathbb{N}$ such that $ a - a_n \in \mathbb{R}$ <i>converges</i> to a number, $a \in \mathbb{R}$, iff for any sequence $\mathbb{N} \ni n \mapsto a_n \in \mathbb{R}$ <i>converges</i> to a number, $a \in \mathbb{R}$, iff for any sequence $\mathbb{N} \ni n \mapsto a_n \in \mathbb{R}$ <i>converges</i> to a number, $a \in \mathbb{R}$, iff for any sequence $\mathbb{N} \ni n \mapsto a_n \in \mathbb{R}$ <i>converges</i> to a number, $a \in \mathbb{R}$, iff for any sequence that they are at most within an <i>e</i> -distance from this number. A sequence that does not converge supence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent to converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent to $\mathbb{R} = (-1, 1)$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1]$ and converges to it when $x = 1$. <i>Sketching out an idea for a proof.</i> Fix $\epsilon > 0$. The goal is to show there wits an $\mathbb{N} \in \mathbb{N} $ such that $ x^n \leq \epsilon$. Taking the logarithm (base 10, say) if we release the inquality to $\geq \frac{ x _{\text{eag}(x) }{ x _{\text{eag}(x) }} = b _{\text{eag}(x) } = $	A special type of sequence occurs when summing numbers. Fix $x \in \mathbb{R}$.	it converges.
a number for each $n \in \mathbb{N}$. In other words, $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} k^n$ defines a to a positive number e called $Euler's$ constant. Sequence. Such a sequence of sums of numbers is called a partial sum as n tends to infinity is called a partial sum for $n \ge 1$. The formation of a sequence of sums of numbers is called the geometric series. The definition of a sequence that tends to a limit is as follows. A calculus. This particular series is called the geometric series is a calculus that $ a - a_n < k > 1 + \sum_{k=0}^{\infty} (\frac{1}{2})^k \le \sum_{k=0}^{\infty} (\frac{1}{2})^k \le \sum_{k=0}^{\infty} (\frac{1}{2})^k$ is the value of the geometric series is $1 + \sum_{k=0}^{\infty} (\frac{1}{2})^k = 1 + \frac{1}{2} + \frac{1}{12} $	In an earlier exercise, it was claimed that $\sum_{k=0}^{n} x^{k} = \frac{1-x^{n}}{1-x}$. This gives	The sequence $\mathbb{N} \ni n \mapsto \sum_{k=0}^{n} \frac{1}{k!}$ converges (here, $k! := 1 \cdot 2 \cdot 3 \cdots k$)
Sequence. Such a sequence that not a function is called a $\frac{partial state}{partial state} = \frac{partial state}{partial state}} = partial sta$	a number for each $n \in \mathbb{N}$. In other words, $\mathbb{N} \ni n \mapsto \sum_{k=0}^{n} x^k$ defines a	to a positive number e called <u>Euler's constant</u> .
$\frac{ }{ $	The limit of a partial sum as n tends to infinity is called an <i>infinite</i>	<i>Proof.</i> $\sum_{k=0}^{n} \frac{1}{k!} = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1\cdot 2\cdot 3} + \frac{1}{1\cdot 2\cdot 3\cdot 4} + \dots + \frac{1}{1\cdot 2\cdots n}$
calculus. This particular series is called the <i>geometric series.</i> The definition of a sequence that tends to a limit is as follows. A = 3 showing that the sequence is bounded. By the monotone converses acquere $\mathbb{N} \ni n \mapsto \alpha_n \in \mathbb{R}$ converges. The definition $a_n \in \mathbb{R}$ converges to a number, $a \in \mathbb{R}$, iff for any real number $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $ a - a_n < \epsilon$ for all $n \ge N$. The number a is called the <i>limit</i> of the sequence are so close to a particular number that they are at most within an ϵ -distance from this number. A sequence that converges to some real number is said to be a <i>divergent</i> sequence. Note that is a genence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show them $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show then $x \in (-1, 1)$ is nutatomatically a from above (often called "the right") or from below (often called "the left"). If the two limits agree, then the limit and be defined in more than one way. One can approach exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically a from above (often called "the right") or from below (often called "the left"). If the two limits agree, then the limit and be defined in more than one way. One can approach exists an $N \in \mathbb{N} \times 0$ and suppose that $x \neq 0$ (the case $x = 0$ is that $0 < x - c < \delta$ implies $ f(x) - L < \epsilon$. T is called the $limit of f(x)$ as x approaches. C, written $\lim_{x \to c} x ^{-1} \le 0$. The isomal the equality is $\frac{ x - c < 1}{ x < x x < x < x < 1}}$ is called the limit of $ x - c < \delta$ implies $ f(x) - L < \epsilon^{-n}$ and "c < $x < c + \delta$ ind $ x < 1 < 0 < x < 0 < x < 0 < x < 0 < x < 0 < x < 0$	series, something you will learn more about in the second semester of	$ < 1 + \frac{1}{2^{0}} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n-1}} $ $ < 1 + \sum^{\infty} (\frac{1}{2})^{k} \operatorname{since} \sum^{n} (\frac{1}{2})^{k} < \sum^{\infty} (\frac{1}{2})^{k} $
The definition of a sequence that tends to a limit is as follows. A sequence $\mathbb{N} \ni n \mapsto a_n \in \mathbb{R}$ converges to a number, $a \in \mathbb{R}$, iff for any real number $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $ a - a_n < \epsilon$ for all $n \ge N$. The number a is called the limit of the sequence and is denoted by $a = \lim_{n \to \infty} a_n$. The ϵ is a measure our precision. This definition says that eventually the terms in the sequence are so close to a particular number that they are at most within an -clistance from this number. A sequence that converges to some real number is said to be <u>convergent</u> and a sequence. Note that if a^n progress forward in this list (the numbers x_n need not increase or from this number is convergent if $\alpha \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ of all $n \ge N$. This is automatically a form above (often called "in more than one way. One can approach exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ of rall $n \ge N$. This is automatically a form above (often called "in more than one way. One can approach exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ of rall $n \ge N$. This is automatically a form above (often called "in the first can be defined in more than one way. One can approach exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ of rall $n \ge 1$. See NW to be any integer greater that hold us gives $n \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }}(\epsilon)$, the last equality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality $n \ge \frac{x > \epsilon}{n}$ for all $n \ge 1$. Set N to be any integer such that $x > 0$ the exist $x = 0$ is true for $x > 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true $\frac{x > \epsilon}{n} < R$ with $1 \ge 1$. Set N to be any integer such that $\frac{x > \epsilon}{n} < R$ is obtained by observing what happens defined in $x > 0$. Therefore, pick N to be any integer such that $\frac{x > \epsilon}{n} < R < \infty$ independent of the value of $ x < $	calculus. This particular series is called the <i>geometric series</i> .	= 1 + 2 since this is the value of the geometric series
sequence $\mathbb{N} \ni n \mapsto \Delta_n \in \mathbb{K}$ converges to a number, $a \in \mathbb{K}$, iff tor any gence theorem, $\mathbb{N} \ni n \mapsto \sum_{k=0}^{k} \frac{1}{k!}$ converges. For all $n \ge N$. The number a is called the <i>limit</i> of the sequence and is denoted by $a = \lim_{n \to \infty} a_n$. The ϵ is a measure our precision. This definition says that eventually the terms in the sequence are so close to a particular number that they are at most within an e-distance progress forward in this list (the numbers k_k need not increase or from this number. A sequence that converges to some real number is said to be <i>convergent</i> and a sequence. Note that if a squence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $\mathbb{N} \in \mathbb{N}$ such that $ x^n \le \epsilon$ raking the logarithm (base 10, say) gives $n\log(x) \le \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing $\log_{ x }(\epsilon)$. Therefore, pick \mathbb{N} to be any integer greater that $\log_{ x }(\epsilon)$. The verses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \neq 0$. Therefore, pick \mathbb{N} to be any integer greater that $\sum_{n \ge 0} (1 + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + $	The definition of a sequence that tends to a limit is as follows. A	= 3 showing that the sequence is bounded. By the monotone conver-
for all $n \ge N$. The number a is called the <i>limit</i> of the sequence and is denoted by $a = \lim_{n \to \infty} a_n$. The ϵ is a measure our precision. This definition says that eventually the terms in the sequence are so close to a particular number that they are at most within an ϵ -distance from this number. A sequence that converges to some real number is said to be <u>convergent</u> and a sequence that does not converge to any real number it <u>convergent</u> sequence. Note that if a sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there it sits an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \neq 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say gives $n\log(x) \le \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \neq 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer greater that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how by N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	sequence $\mathbb{N} \ni n \mapsto a_n \in \mathbb{R}$ <u>converges</u> to a number, $a \in \mathbb{R}$, iff for any real number $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $ a - a_n < \epsilon$	gence theorem, $\mathbb{N} \ni n \mapsto \sum_{k=0}^{\infty} \frac{1}{k!}$ converges.
is denoted by $a = \lim_{n \to \infty} a_n$. The ϵ is a measure our precision. This definition says that eventually the terms in the sequence are so close to a particular number that they are at most within an ϵ -distance from this number. A sequence that converges to some real number is said to be <u>convergent</u> and a sequence that does not converge to any real number is said to be a <u>divergent</u> sequence. Note that if a sequence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1]$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there is a log(x) ≥ 0 for all $n \ge 1$. Therefore, suppose that $x \neq 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, then any integer greater that $0 \le 1 \le 1/2$ and $0 \le 1 \le 1/2$. The sequence that $x \neq 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$. Ster N to be any integer greater that $ x^n = x < 0$ (the case $x = 0$ is true $t > 0$. Such that $0 < x < 1 < 0$. Charding the log $ x < 0$. Therefore, pick N to be any integer greater that $0 \le 1/2$ and $0 \le 1/2$ a	for all $n \ge N$. The number a is called the <u>limit</u> of the sequence and	Limits of functions
definition says that eventually the terms in the sequence are so close to a particular number that they are at most within an ϵ -distance from this number. A sequence that converges to some real number is said to be <u>convergent</u> and a sequence that does not converge any real number is said to be a <u>divergent</u> sequence. Note that if a sequence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically gives $n\log(x) \le \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(\epsilon)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater that $\log_{ x }(\epsilon)$. Proof, Fix $\epsilon > 0$ and suppose that $x \ne 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer stant $k = 1/1000$. Then $ x^n = x ^n \le x ^{\log x }(\epsilon) = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x ^n \le x ^{\log x }(\epsilon) = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x ^n \le x ^{\log x }(\epsilon) = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x ^n \le x ^{\log x }(\epsilon) = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x ^n \le x ^{\log x }(\epsilon) = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x ^n \le x ^{\log x }(\epsilon)$ are the proof. The special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x ^n \le x ^{\log x }(\epsilon)$ are the proof. The special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $ x_1 = x$	is denoted by $a = \lim_{n \to \infty} a_n$. The ϵ is a measure our precision. This	The limit of a sequence $\mathbb{N} \to \mathbb{R}$ is obtained by observing what happens
The sequence that converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(\epsilon)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \ne 0$ (the case $x = 0$ is true $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	definition says that eventually the terms in the sequence are so close to a particular number that they are at most within an <i>e</i> -distance	to an infinite ordered list of numbers $(x_1, x_2, x_3, x_4, \ldots)$ as you progress forward in this list (the numbers x_1 need not increase or
is said to be <u>convergent</u> and a sequence that does not converge to any real number is said to be a <u>divergent</u> sequence. Note that if a sequence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \ne 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing the vert set inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater that $N \ge 0$ such that $0 < x - c < \delta$ implies $ f(x) - L < \epsilon$. L is called the the true of $ x ^n = 0 < \epsilon$ for all $n \ge 1$. Set N to be any integer such that $N \ge \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	from this number. A sequence that converges to some real number	decrease as k increases!). The limit of a sequence is a number that
any real number is said to be a <u>divergent</u> sequence. Note that if a sequence converges, the number it converges to is unique. The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \leq \epsilon$ for all $n \geq N$. This is automatically true for $x = 0$ for all $n \geq 1$. Therefore, suppose that $x \neq 0$. The desired inequality is equivalent to $ x ^n \leq \epsilon$. Taking the logarithm (base 10, say gives $n \log(x) \leq \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing by it reverses the inequality to $n \geq \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \neq 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Then $ x^n = x ^n \leq x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \geq N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	is said to be <u>convergent</u> and a sequence that does not converge to	the sequence tends to. The limit of a function is similar, but not quite
The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \ne 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10, \log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater that $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \ne 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	any real number is said to be a <u>divergent</u> sequence. Note that if a sequence converges the number it converges to is unique	the same. First, the limit of a function $f: \mathbb{R} \to \mathbb{R}$ is obtained at every point in its domain so saying "the limit of f " alone is meaningless.
The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$. Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \ne 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \ne 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.		Instead, one must say "the limit of $f(x)$ as x approaches c" or "the
domain always contains an open interval of points around c). Second, Sketching out an idea for a proof. Fix $\epsilon > 0$. The goal is to show there exists an $N \in \mathbb{N}$ such that $ x^n \le \epsilon$ for all $n \ge N$. This is automatically true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \ne 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \ne 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. The control of the points around c). Second, domain always contains an open interval of points around c). Second, the limit can be defined in more than one way. One can approach the limit can be defined in more than one way. One can approach the limit can be defined in more than one way. One can approach the limit can be defined in more than one way. One can approach the limit can be defined in more than one way. One can approach the limit can be defined in the two limits agree, then the limit can be defined "the left"). If the two limits agree, then the limit can be defined "the left"). If the two limits agree, then the limit can be defined "the left"). If the two limits agree, then the limit can be defined "the left"). It is ache to the limit of $f(x)$ as x $approaches c$, written $\lim_{x \to c} f(x) = L$, iff for any $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < x - c < \delta$ implies $ f(x) - L < \epsilon$. L is called the functional limit of f as x approaches c. One can also define limits from $\sum_{x \to c} f(x) =$	The sequence $\mathbb{N} \ni n \mapsto x^n$ is convergent if $x \in (-1, 1]$. Furthermore, it converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = -1$	limit of f at c ," where c is in the domain of f (we will assume the
See ching out all the limit of a proof. Fix $\epsilon > 0$. The goal is to show there is a under the limit can be defined in the way. One can approach a from above (often called "the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the limit of the right") or from below (often called "the right") or from provide the right of f(x) as x ap	It converges to 0 when $x \in (-1, 1)$ and converges to 1 when $x = 1$.	domain always contains an open interval of points around c). Second, the limit can be defined in more than one way. One can approach
true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \ne 0$. The desired inequality is equivalent to $ x ^n \le \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \le \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \ne 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \ne 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	exists an $N \in \mathbb{N}$ such that $ x^n < \epsilon$ for all $n > N$. This is automatically	a from above (often called "the right") or from below (often called
inequality is equivalent to $ x ^n \leq \epsilon$. Taking the logarithm (base 10, say) gives $n \log(x) \leq \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing by it reverses the inequality to $n \geq \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \neq 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \geq 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \leq x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \geq N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. Imambiguously. [Reference: Herb Gross I.4. Derivatives and Limits] Let $a, b, c \in \mathbb{R}$ with $a < c < b$ and let $f : (a, b) \to \mathbb{R}$ (or $f : (a, c) \cup (c, b) \to \mathbb{R}$). L is said to be the limit of $f(x)$ as x approaches c, written $\lim_{x \to c} f(x) = L$, iff for any $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < x - c < \delta$ implies $ f(x) - L < \epsilon$. L is called the functional limit of f as x approaches c. One can also define limits from below (the left) $\lim_{x \to c} f(x) = L$, and above (the right) $\lim_{x \to c} f(x) = L$, by using " $c - \delta < x < c$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ is independent of the value of f at c, even if it is defined.	true for $x = 0$ for all $n \ge 1$. Therefore, suppose that $x \ne 0$. The desired	"the left"). If the two limits agree, then the limit can be defined
gives $h \log(x) \leq \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing by it reverses the inequality to $n \geq \frac{\log(\epsilon)}{\log(x)} = \log_{ x }(\epsilon)$, the last equality holding since $x \neq 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \geq 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \leq x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \geq N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. Let $a, b, c \in \mathbb{R}$ with $a < c < b$ and let $f : (a, b) \to \mathbb{R}$ (or $f : (a, c) \cup (c, b) \to \mathbb{R}$). L is said to be the $\frac{limit of f(x) as x}{p > 0}$, there exists a procent baseline true true true true true true true tru	inequality is equivalent to $ x ^n \leq \epsilon$. Taking the logarithm (base 10, say)	unambiguously. [Reference: Herb Gross I.4. Derivatives and Limits]
holding since $x \neq 0$. Therefore, pick N to be any integer greater than $\log_{ x }(\epsilon)$. Proof. Fix $\epsilon > 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. $f: (a, c) \cup (c, b) \to \mathbb{R}$). L is said to be the <u>limit of $f(x)$ as x</u> $products c, written \lim_{x \to c} f(x) = L, iff for any \epsilon > 0, there exists aproduct c, b \to \mathbb{R}.product c, b \to \mathbb{R}.produc$	gives $n \log(x) \ge \log(\epsilon)$. Since $ x < 10$, $\log(x)$ is negative so dividing by it reverses the inequality to $n \ge \frac{\log(\epsilon)}{100} = \log(\epsilon)$, the last equality	Let $a, b, c \in \mathbb{R}$ with $a < c < b$ and let $f : (a, b) \to \mathbb{R}$ (or
$\log_{ x }(\epsilon).$ $Proof. Fix \epsilon > 0 and suppose that x \neq 0 (the case x = 0 is true since x ^n = 0 < \epsilon for all n \ge 1). Set N to be any integer such that N > \log_{ x }(\epsilon). Then x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon for all n \ge N.To see how big N can be, consider the special case where x = 1/2 and \epsilon = 1/1000. Then \log_{1/2}(1/1000) \approx 9.97 so that N = 10 works.\sum_{k=0}^{ x + x - x - x - x - x - x - x - x - x -$	holding since $x \neq 0$. Therefore, pick N to be any integer greater than	$J : (a,c) \cup (c,0) \to \mathbb{K}$. L is said to be the <u>limit of $f(x)$ as x</u> approaches c, written $\lim f(x) = L$, iff for any $\epsilon > 0$, there exists a
Proof. Fix $\epsilon > 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	$\log_{ x }(\epsilon).$	$\delta > 0$ such that $0 < x - c < \delta$ implies $ f(x) - L < \epsilon$. L is called the
since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N > \log_{ x }(\epsilon)$. Then $ x^n = x ^n \le x ^{\log_{ x }(\epsilon)} = \epsilon$ for all $n \ge N$. To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	<i>Proof.</i> Fix $\epsilon > 0$ and suppose that $x \neq 0$ (the case $x = 0$ is true	functional limit of f as x approaches c . One can also define limits from
To see how big N can be, consider the special case where $x = 1/2$ and $\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. b using " $c - \delta < x < c$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$ implies $ f(x) - L < \epsilon$ " and " $c < x < c + \delta$	since $ x ^n = 0 < \epsilon$ for all $n \ge 1$). Set N to be any integer such that $N \ge \log_{-\epsilon}(\epsilon)$. Then $ x^n = x ^n < x ^{\log_{1/2}(\epsilon)}$.	below (the left) $\lim_{x \neq c} f(x) = L$, and above (the right) $\lim_{x \searrow c} f(x) = L$,
$\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works. Implies $ f(x) - L < \epsilon$," respectively. Warning: The limit of f at c is independent of the value of f at c , even if it is defined.	$ x > \log_{ x }(\epsilon)$. Then $ x = x \le x \le \epsilon$ for all $n \ge N$.	by using $c - \delta < x < c$ implies $ f(x) - L < \epsilon$ and $c < x < c + \delta$
	$\epsilon = 1/1000$. Then $\log_{1/2}(1/1000) \approx 9.97$ so that $N = 10$ works.	implies $ J(x) - L < \epsilon$," respectively. Warning: The limit of f at c is independent of the value of f at c, even if it is defined.

Math 1151Q Honors Calculus I Arthur Parzygnat Week $\#03$	Theorem 2. Let f be a function continuous at $b \in \mathbb{R}$ and let
Continuity	g be a function with $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$, i.e.
One of the main assumptions about calculus, as formulated by New-	$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$
ton, Leibniz, and others, is that there are quantities that one can break down into smaller pieces indefinitely, i.e. infinitesimally. Whether this is actually possible in our word has been debated over	operations does not matter. Here the operations are limits and ap- plying functions. Note, however, that the assumptions are important.
millennia. Based on our understanding of quantum mechanics, time, and space, this seems like an invalid assumption. Nevertheless, it	Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined by $\mathbb{R} \ni x \mapsto \sqrt{ x }$ and
holds to a good enough accuracy for many practical purposes.	$\mathbb{R} \ni x \mapsto g(x) := \begin{cases} 1 & \text{if } x = 0 \\ x^2 & \text{otherwise} \end{cases}. \text{ Then } \lim_{x \to 0} g(x) = 0 \text{ and } f$
Let $a, b, c \in \mathbb{R}$ with $a < c < b$ and let $f : (a, b) \to \mathbb{R}$ be a function. f is <u>continuous at c</u> iff for every $\epsilon > 0$, there exists a $\delta > 0$ such that $\overline{f(x)} \in (f(c) - \epsilon, f(c) + \epsilon)$ for all $x \in (c - \delta, c + \delta) \cap (a, b)$, i.e. iff $f(c) = \lim_{x \to c} f(x)$. f is <u>discontinuous at c</u> iff f is not continuous at $c. f$ is <u>continuous on (a, b)</u> iff f is continuous at c for all $c \in (a, b)$.	is continuous everywhere. The composition of g followed by f is given by $\mathbb{R} \ni x \mapsto f(g(x)) = \begin{cases} 1 & \text{if } x = 0 \\ x & \text{otherwise} \end{cases}$. Hence, $\lim_{x \to 0} f(g(x)) = 0$ and $f\left(\lim_{x \to 0} g(x)\right) = f(0) = 0$. This example shows that it is not necessary
[Reference: Herb Gross II.6 Continuity]	for g to be continuous at a . What is required, however, is that it must have a well-defined limit at a .
A real <u>polynomial</u> is a function $p : \mathbb{K} \to \mathbb{K}$ of the form $\mathbb{R} \ni x \mapsto p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$, where $a_0, a_1, a_2, \dots, a_m$ are real numbers and where $m \in \mathbb{N}$. The largest m for which the	Theorem 3. If g is continuous at c and f is continuous at $g(c)$, then $f \circ g$ is continuous at c.
coefficient in front of x^m is not zero is called the <u>degree</u> of the polynomial. A degree zero polynomial is a constant, a degree one polynomial is a linear function, and a degree two polynomial is a quadratic function. For example, $\mathbb{R} \ni x \mapsto p(x) = 5x^4 - 3x^3 + 2x - 4$	We can use this theorem to prove that functions such as the ones given before Theorem 1 are continuous (after we have proven that the basic functions are continuous). For example, if we show exp is continuous and any polynomial p is continuous, then $\exp \circ p \equiv e^p$ is continuous.
is a degree 4 polynomial. As another example, and to set some notation, the polynomial p_m will denote $\mathbb{R} \ni x \mapsto p_m(x) := x^m$ and is called the standard homogeneous degree m polynomial. The roots of a	The largest subset $A \subseteq \mathbb{R}$ for which $A \ni x \mapsto \ln(1 + \cos(x))$ is continuous is $A = \bigcup_{n \in \mathbb{Z}} ((2n-1)\pi, (2n+1)\pi).$
polynomial p are the set of numbers $\mathcal{R}(p) := \{z \in \mathbb{R} : p(z) = 0\}$. A <u>rational function</u> r is the ratio (aka quotient) of two polynomials, i.e. there exist polynomials	Theorem 4. Let $a, b \in \mathbb{R}$ with $a < b$ and let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then for any L satisfying either $f(a) < L < f(b)$ or $f(a) > L > f(b)$, there exists $a \ c \in (a, b)$ with $f(c) = L$. This is called the <i>Intermediate Value Theorem</i> (IVT) and can be used
x^{2-1} $p \text{ and } q \text{ such that the domain of}$ $r \text{ is } \mathbb{R} \setminus \mathcal{R}(q) \text{ and } r(x) = \frac{p(x)}{q(x)}$	The polynomial $p: \mathbb{R} \ni x \mapsto x^4 + 3x^3 - 3x^2 - 7x + 3$ has at least four
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(real) roots. <i>Proof.</i> Note that $p(-4)$, $p(0)$, $p(2) > 0$ and $p(-3)$, $p(1) < 0$. Since p is continuous by Theorem 1, the IVT applies and there are roots in the intervals $(-4, -3)$, $(-3, 0)$, $(0, 1)$, and $(1, 2)$.
Other common functions include trigonometric functions such as cos and sin, the exponential function exp, and the logarithm log. Most common functions are compositions of all of the previous ones. For example, the formula $x \mapsto e^{-x^2}$ is obtained from the composition	There exists a $z \in \mathbb{R}$ such that $\arctan(z) = 1 - z$. <i>Proof.</i> Consider the function $f : \mathbb{R} \ni x \mapsto \arctan(x) - 1 + x$. f is continuous on its domain and $f(0) = -1 < 0$ while $f(1) = \frac{\pi}{4} > 0$. By the IVT, there exists a $z \in (0, 1)$ such that $\arctan(z) - 1 + z = 0$.
of the functions $x \xrightarrow{-p_2} -x^2 \xrightarrow{\exp} e^{-x^2}$. As another more compli-	Rates of change and derivatives
cated example, the formula $x \mapsto \cot(2\pi x)$ is the composition $\mathbb{K} \setminus \mathbb{Z} \ni x \stackrel{(\text{cos}, \sin)}{\longmapsto} (\cos(\pi x), \sin(\pi x)) \stackrel{\text{divide}}{\longrightarrow} \frac{\cos(\pi x)}{\sin(\pi x)} = \cot(\pi x)$. Here,	When dropping a bowling ball off of h a medium-sized cliff, the vertical po-
(cos, sin) denotes the function whose domain is \mathbb{R} and whose codomain is $\mathbb{R} \times \mathbb{R}$ and whose value at $x \in \mathbb{R}$ is $(\cos(x), \sin(x))$. Theorem 1. Polynomials, rational functions, trigonometric func-	sition h (in meters) of the ball as a function of time t (in seconds) is given roughly by $h(t) = -9.8t^2 + H$, where H is the initial height at which
tions, root functions, exponentials, and logarithms are continuous on their domain of definition.	the ball is dropped. The ball appears
The floor function $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{R}$ is defined by $\mathbb{R} \ni x \mapsto \lfloor x \rfloor$ is the largest integer n such that $n \leq x$. $\mathbb{R} \ni x \stackrel{\lfloor \cdot \rfloor}{\longmapsto} \sum_{n=-\infty}^{+\infty} \Theta([n, n+1))(x),$	to move slowly initially and it picks up speed the farther it falls from the top of the cliff. How fast is it going after t seconds? $0 1 2 3$ In fact, what do we mean by "how fast?" Do we mean the <i>average</i> speed of the ball? This would not distinguish the earlier slower speed or the later faster speed. What we are looking for is some average speed over a small interval of time such as [t_t_1] for some
$\Theta([n, n+1))(x) := \begin{cases} n & \text{if } x \in [n, n+1) \\ 0 & \text{otherwise} \end{cases} \cdot \begin{bmatrix} -2 & -1 & 1 & 2 \\ 1 & -1 & -1 \\ 0 & \text{otherwise} \end{bmatrix}$	$t_0, t_1 \in \mathbb{R}$ with $t_1 > t_0$. The <u>average velocity</u> over this time period is defined to be $\frac{h(t_1)-h(t_0)}{t_1-t_0}$. As this interval gets smaller, we expect a better approximation to the <i>instantaneous velocity</i> , which is defined
$\lfloor \cdot \rfloor$ is discontinuous on $\mathbb{Z} \subseteq \mathbb{R}$ and is continuous everywhere else, i.e. $\lfloor \cdot \rfloor$ is continuous on $\mathbb{R} \setminus \mathbb{Z}$.	as the limit of average velocities. More precisely, the (instantaneous) velocity at $t \in \mathbb{R}$ is given by $v(t) := \lim_{\epsilon \to 0} \frac{h(t+\epsilon) - h(t-\epsilon)}{2\epsilon}$ if it exists.

Setting g := 9.81, the limit of this quotient is given $\lim_{\epsilon \to 0} \frac{h(t+\epsilon) - h(t-\epsilon)}{2\epsilon} = \lim_{\epsilon \to 0} \frac{-g(t+\epsilon)^2 + H + g(t-\epsilon)^2 - H}{2\epsilon}$ $\lim_{\epsilon \to 0} \frac{-4gt\epsilon}{2\epsilon} = -2gt.$ This result has the property when t is small, the velocity is small. Conversely, when t increases, the speed increases This is consistent with our observation that the ball picks up speed as it falls. Notice this limit is the same as $\lim_{t \to 0} \frac{h(t + \hat{\epsilon}) - h(t)}{2}$. Since the latter is more often used as the definition of the derivative, we will use this one as well. [Reference: Herb Gross I.4 Derivatives and Limits (first 16 minutes and 30 seconds)] Let $f:(a,b) \to \mathbb{R}$ be a function with b > a. The derivative of f at $c \in (a, b)$, if it exists, is the limit $\lim_{x \to 0} \frac{f(x+\epsilon) - f(\overline{x})}{c}$ and is denoted by f'(c) or $(D_c f)(1)$, where $\begin{array}{l} \underset{\epsilon \to 0}{\underset{r \to 0}{\operatorname{min}}} & \epsilon \\ D_c f : \mathbb{R} \to \mathbb{R} \text{ is the linear function } \mathbb{R} \ni v \mapsto (D_c f)(v) := (f'(c))v \\ \end{array}$ If x is used as the variable input for the function f, f'(c) might also be written as $\frac{df}{dx}(c)$ or $\left(\frac{d}{dx}f\right)(c)$. The <u>derivative of f</u> is the function $f': (a,b) \ni x \mapsto f'(x)$, provided that it exists for all $x \in (a,b)$. is differentiable at c iff f'(c) exists. f is differentiable on (a, b) iff f is differentiable at c for all $c \in (a, b)$. Higher derivatives are defined inductively: f is n times differentiable iff f' is (n-1) times differentiable. The *n*-th derivative of f is denoted by $f^{(n)}$ or $\frac{d^n f}{dx^n}$. When n is small, such as n = 3, the *n*-th derivative may also be written as f'''. [Reference: Herb Gross II.1 Derivatives of Some Simple Functions] Let $f: (0,\infty) \to \mathbb{R}$ be the function defined by $(0,\infty) \ni x \mapsto f(x) := \frac{1}{x}$ Then $f'(x) = -\frac{1}{x^2}$ for all $x \in (0, \infty)$. $Proof. \lim_{\epsilon \to 0} \frac{\frac{1}{x+\epsilon} - \frac{1}{x}}{\epsilon} = \lim_{\epsilon \to 0} \frac{x - (x+\epsilon)}{\epsilon(x+\epsilon)x} = \lim_{\epsilon \to 0} \frac{-1}{x(x+\epsilon)} = -\frac{1}{x^2}.$ $\sin' = \cos$. [Reference: Herb Gross III.1 Circular Functions] *Proof.* Since $\sin(y) - \sin(x) = 2\sin\left(\frac{y-x}{2}\right)\cos\left(\frac{y+x}{2}\right)$ the difference quotient becomes $\lim_{\epsilon \to 0} \frac{\sin(x+\epsilon) - \sin(x)}{\epsilon} = \lim_{\epsilon \to 0} \left(\frac{\sin(\epsilon)}{\epsilon}\cos\left(\frac{2x+\epsilon}{2}\right)\right) =$ $\left(\lim_{\epsilon \to 0} \frac{\sin(\epsilon)}{\epsilon}\right) \lim_{\epsilon \to 0} \cos\left(x + \frac{\epsilon}{2}\right) = 1 \cdot \cos(x) = \cos(x).$ In this calculation we used a result from a previous exercise and continuity of cos. The absolute value function $f := | \cdot | : \mathbb{R} \to \mathbb{R}$ is differentiable everywhere except at 0. Its derivative is broken up into two cases If x < 0, then $f'(x) = \lim_{\epsilon \to 0} \frac{|x+\epsilon| - |x|}{\epsilon} = \lim_{\epsilon \to 0} \frac{-x-\epsilon+x}{\epsilon} = -1$. If x > 0, then $f'(x) = \lim_{\epsilon \to 0} \frac{|x+\epsilon| - |x|}{\epsilon} = \lim_{\epsilon \to 0} \frac{x+\epsilon-x}{\epsilon} = 1$. For x = 0, the derivative does not exist because $\lim_{\epsilon \neq 0} \frac{|\epsilon|}{\epsilon} = \lim_{\epsilon \neq 0} \frac{-\epsilon}{\epsilon}$ $\lim_{\epsilon \searrow 0} \frac{|\epsilon|}{\epsilon} = \lim_{\epsilon \searrow 0} \frac{\epsilon}{\epsilon} = 1.$ The geometric meaning of the derivative y

of a function $f : \mathbb{R} \to \mathbb{R}$ is visualized by looking at the graph of f. The <u>tangent line</u> to (the graph of) f at the point $(z, f(z)) \in$ $\Gamma(f)$ is the straight line through (z, f(z))with slope f'(z), provided that f'(z) exists. Explicitly, if the second coordinate is described by the variable y, this line is given by y(x) = (f'(z))x + f(z) - (f'(z))z = (f'(z))(x-z) + f(z). For example, if $f(x) = 1 - x^2$, then f'(x) = -2x, $f(-\frac{1}{2}) = \frac{3}{4}$, and $f'(-\frac{1}{2}) = 1$. Hence the tangent line to f is given by $y(x) = (x + \frac{1}{2}) + \frac{3}{4}$.

Theorem 5. Let $f : (a,b) \to \mathbb{R}$ be a differentiable function with f'(x) > 0 (f'(x) < 0) for all $x \in (a,b)$. Then f(y) > f(x) (f(y) < f(x)) for all $y, x \in (a,b)$ with y > x. [Reference: Herb Gross II.7 Curve Plotting]

Exercises For these exercises, for each $n \in \mathbb{N}$, recall p_n denotes the homogeneous degree n polynomial given by $\mathbb{R} \ni x \mapsto p_n(x) := x^n$.

Exercise 1. Let $a, b, c \in \mathbb{R}$. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ with $\lim_{x \to b} f(x) = c$ and an example of a function $g : \mathbb{R} \to \mathbb{R}$ with $\lim_{x \to b} g(x) = b$ but for which $\lim_{x \to b} f(g(x)) \neq f(\lim_{x \to b} g(x))$

 $\lim_{x \to a} g(x) = b \text{ but for which } \lim_{x \to a} f(g(x)) \neq f\left(\lim_{x \to a} g(x)\right).$

Exercise 2. Plot p_n on the domain (-1, 1] for n = 1, 2, ..., 10. For each $x \in (-1, 1]$, compute $\lim_{n \to \infty} p_n(x)$ (be careful about what limit you're taking—the answer depends on x). What happens if x = -1? What about $x \in (-\infty, -1) \cup (1, \infty)$? Hint: use Desmos, the online graphing calculator!

Exercise 3. What are the largest domains $A, B \subseteq \mathbb{R}$ such that the functions $A \ni x \mapsto |x^2|$ and $B \ni x \mapsto \tan(\sqrt{x})$ are continuous?

Exercise 4. What are the roots of the polynomial $p : \mathbb{R} \ni x \mapsto (x+3)(x+2)x(x-1)(x-2)$? Over what subset of \mathbb{R} is p positive? Over what subset of \mathbb{R} is p negative? Provide a rough sketch of the graph of p without using a calculator. If q' = p for some $q : \mathbb{R} \to \mathbb{R}$, indicate the subsets over which q is increasing and the subsets over which q is decreasing. On the same plot, sketch a possible graph of q. **Exercise 5.** Let $a, b, c \in \mathbb{R}$. From the limit definition of the derivative, prove the derivative of $\mathbb{R} \ni x \mapsto ax^2 + bx + c$ is $\mathbb{R} \ni x \mapsto 2ax + b$.

Exercise 6. From the limit definition, prove that $p'_3 = 3p_2$ and $p'_4 = 4p_3$. Then, try to prove $p'_n = np_{n-1}$ for all $n \in \mathbb{N}$. Hint: obtain and prove a formula for factoring $x^n - y^n$ into (x - y) times something.

Exercise 7. Let $f : [0,\infty) \to \mathbb{R}$ be the *n*-th root function, i.e. $f(x) = x^{1/n}$. Prove $f'(x) = \frac{1}{n}x^{(1-n)/n}$ for all $x \in (0,\infty)$. Hint: in the difference quotient, set $u := (x + \epsilon)^{1/n}$ and $v := x^{1/n}$ and use the formula for factoring $u^n - v^n$ into (u - v) times something.

Exercise 8. Fix $n \in \mathbb{N}$. Let $g: (0, \infty) \to \mathbb{R}$ be the function $(0, \infty) \ni x \mapsto \frac{1}{x^n}$. Using the definition of the derivative, prove $g'(x) = -\frac{n}{x^{n+1}}$. Hint: use ideas similar to the previous two exercises.

Exercise 9. Following a similar method to the one in this handout, prove that $\cos' = -\sin$ from the definition of the derivative.

Exercise 10. Prove that the function $\mathbb{R} \ni x \mapsto \begin{cases} 1 & \text{if } x = 0 \\ \frac{\sin(x)}{x} & \text{otherwise} \end{cases}$ is continuous. Compute its derivative for all points in its domain for which it is differentiable. Is it differentiable everywhere?

Exercise 11. Prove that $f : \mathbb{R} \ni x \mapsto \sqrt{|x|}$ is continuous. Prove that f is differentiable on $\mathbb{R} \setminus \{0\}$ and compute its derivative. What are $\lim_{x \nearrow 0} f'(x)$ and $\lim_{x \searrow 0} f'(x)$? Draw a graph of f on the domain (-4, 4), compute the equation for the tangent line to f at the point (2, g(2)), and draw this tangent line on the same plot.

Exercise 12. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $\mathbb{R} \ni x \mapsto \frac{1}{4}x^4 - \frac{2}{3}x^3 - \frac{5}{2}x^2 + 6x$. Indicate the domain over which f' is strictly positive. What is the domain over which f' is negative? Over what domain is f' = 0? Compute f'(x) for all $x \in (-3, 4)$ and graph as much of this function as is possible on the grid to the right.

Exercise 13. Fix a > 0 and $N \in \mathbb{N}$. Set L := Na. For every ordered (N + 1)-tuple of numbers $\vec{f} := (f_0, f_1, f_2, \dots, f_N)$, define the $\frac{discrete\ derivative\ }{f}$ to be the ordered (N + 1)-tuple of numbers $(f'_0, f'_1, f'_2, \dots, f'_N)$ with $f'_n := \frac{f_{n+1}-f_{n-1}}{2a}$ (set $f_{-1} := f_{N-1}$ and $f_{N+1} = f_0$). Setting N to be large (such as N = 100) and a to be small (such as a = 0.1), write a program that computes the discrete derivative given a list of numbers. To verify your program works, set $L := 2\pi$ and N := 100 and apply it to the list of numbers given by $f_n := \sin\left(\frac{2\pi n}{100}\right)$.

Math 1151Q Honors Calculus I Arthur Parzygnat Week #04	If $f: A \to B$ is one-to-one and onto, the <u>inverse</u> of f is the function
Properties of differentiation	$f^{-1}: B \to A$ such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$. Do not
Theorem 1. Let $f, q : \mathbb{R} \to \mathbb{R}$ be differentiable functions and let $c \in \mathbb{R}$.	conflate f^{-1} with the function $\frac{1}{f}$ (which might not even make sense if
Then $f + g$ and cf are differentiable and their derivatives are given	A and B are not subsets of real numbers). Theorem 5 Let $f:[a, b] \rightarrow \mathbb{P}$ be a differentiable one to one function
by $(f + g)' = f' + g'$ and $(cf)' = cf'$, respectively. In other words,	with $f'(x) \neq 0$ for all $x \in [a, b]$. Then $f([a, b])$ is a closed interval [c, d]
differentiating is a linear operation.	in \mathbb{R} and $f^{-1}: [c,d] \to [a,b]$ is differentiable with derivative given by
This result lets us compute derivatives of arbitrary polynomials given	$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$ for all $y \in [c, d]$.
that we know $p'_n = np_{n-1}$ for all $n \in \mathbb{N}$. This is because every polyno-	This is called the <i>inverse function theorem</i> . The fact that $f([a, b])$ is
mial p is of the form $\mathbb{R} \ni x \mapsto p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ for	a closed interval only relies on the continuity of f . The hard part of
some $n \in \mathbb{N}$ with $a_k \in \mathbb{R}$ for all $k \in \{0, 1, 2,, n\}$. The derivative is	the theorem is proving that f^{-1} is differentiable. Rather than proving
$p' = (a_0 + a_1p_1 + a_2p_2 + \dots + a_np_n)' = a'_0 + a_1p'_1 + a_2p'_2 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_0 + a_1p'_1 + a_2p'_1 + \dots + a_np'_n = a'_n + a'_n +$	this, let us take this for granted to derive the formula for $(f^{-1})'$. Since
$0 + u_1 + 2u_2p_1 + \dots + nu_np_{n-1}$. Theorem 2. Let $f \in \mathbb{R}$ be differentiable functions. Then for is	$f \circ f = 10$, the chain rule gives $f(f \circ (y))(f \circ)(y) = 1$, which gives the desired result [Reference: Herb Gross II 4 Differentiation of
Theorem 2. Let $f, g: \mathbb{R} \to \mathbb{R}$ be alignmentiable functions. Then fg is differentiable and $(fa)'(x) = f'(x)a(x) + f(x)a'(x)$ for all $x \in \mathbb{R}$	Inverse Functions]
In this notation $fg: \mathbb{R} \to \mathbb{R}$ denotes the product of f and g (not the	$m_{\rm p} = -1/(1) = 1/3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
composition) and its value at $x \in \mathbb{R}$ is given by $(fg)(x) := f(x)g(x)$.	$\mathbb{R} \ni x \mapsto p_3^{-1}(x) = x^{1/6}$ is the inverse of $p_3 : \mathbb{R} \ni x \mapsto x^6$. Notice that the inverse function is defined on all of \mathbb{P} but $x'(0) = 0$ so the
This theorem is called the <u>product rule</u> .	inverse function theorem does not apply at this point. Nevertheless
$(p_3 \sin)' = 3p_2 \sin + p_3 \cos$, i.e. $\frac{d}{d} (x^3 \sin(x)) = 3x^2 \sin(x) + x^3 \cos(x)$	it applies everywhere else on $\mathbb{R} \setminus \{0\}$. Hence, the derivative of
for all $x \in \mathbb{R}$.	p_3^{-1} on $\mathbb{R} \setminus \{0\}$, using the inverse function theorem, is given by
Given three differentiable functions $f a h : \mathbb{R} \to \mathbb{R}$ the derivative of	$(\tilde{p}_3^{-1})'(x) = \frac{1}{p_2'(p_3^{-1}(x))} = \frac{1}{3p_2(p_3^{-1}(x))} = \frac{1}{3(x^{1/3})^2} = \frac{1}{3}x^{-2/3}$ for all
the product is $(fah)' = f'(ah) + f(ah)' = f'ah + fa'h + fah'$.	$x \in \mathbb{R} \setminus \{0\}.$
$\mathbf{T} = \mathbf{P} = $	$\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ is an invertible
Theorem 3. Let $\mathbb{R} \leftarrow \mathbb{R} \leftarrow \mathbb{R}$ be two differentiable functions. Then	differentiable function whose deriva-
$\mathbb{R} \mathbb{R}$ is differentiable and $(f \circ g)'(x) = f'(g(x))g'(x)$ for all $x \in \mathbb{R}$. This theorem is called the chain rule [Beference: Herb Cross: U.3]	tive vanishes nowhere on the domain 2
Composite Functions and the Chain Bule! This result is less mysterious	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ as it is given by $\tan'=\frac{1}{\cos^2}$
if we use the alternative perspective on the derivative of f at x as a	(see Exercise 6). Hence, the inverse 1
linear function $D_x f : \mathbb{R} \to \mathbb{R}$ whose value at 1 is $(D_x f)(1) = f'(x)$	of tan is denoted by arctan and is a
and whose value at $v \in \mathbb{R}$ is $(D_x f)(v) = (f'(x))v$. This linear operator	function with domain \mathbb{R} . Its deriva-
$D_x f$ is just multiplication by the slope of function f at x . From this	tive is therefore given by $\arctan'(y) = -1$
perspective, the chain rule states $a(x)$	$\frac{1}{\tan'(\arctan(y))} = \cos^2(\arctan(y)) = \frac{1}{2}$
$\gamma(x)$	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}^2$
	$\left(\frac{1}{\sqrt{1+y^2}}\right) = \frac{1}{1+y^2}$ for all $y \in \mathbb{R}$.
$f / g \Rightarrow D_{q(x)}f D_{xq}$	[Reference: Herb Gross III.2 Inverse Circular Functions]
	Exercises
$\bigwedge \mathbb{R} \xleftarrow{f \circ g} \mathbb{R} \bigwedge \bigwedge \mathbb{R} \xleftarrow{D_x(f \circ g)} \mathbb{R} \bigwedge$	For these everyises, for each $n \in \mathbb{N}$ recall n denotes the homogeneous
$f(g(x)) \longleftarrow f'(g(x))g'(x) $	degree n polynomial given by $\mathbb{R} \ni x \mapsto p_n(x) := x^n$.
i.e. $D(f \circ a) = (D \circ f) \circ (D a)$ for all $r \in \mathbb{R}$. In Leibniz notation if	Exercise 1 Let $a \in \mathbb{R}$ with $a < b$ Prove that if a function f .
y represents f as a function of u and u represents q as a function of x.	$(a, b) \to \mathbb{R}$ is differentiable at $c \in (a, b)$, then f is continuous at c.
the chain rule says $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ though care should be taken to make	Exercise 2 Using the product rule linearity of differentiation and
sure this is all expressed in terms of x .	$p'_{n-1} = 1$ prove that $p'_{n-1} = np_{n-1}$ for all $p \in \mathbb{N}$
$(\sin^3)' = (p_3 \circ \sin)' = 3(p_2 \circ \sin) \cos$, i.e. $\frac{d}{dx} \sin^3(x) = 3\sin^2(x)\cos(x)$	p_1 i, proto that p_n p_{n-1} for all $n \in \mathbb{N}$.
for all $x \in \mathbb{R}$. Notice the difference between $p_3 \circ \sin$ and $p_3 \sin$ above. As	Exercise 3. Using the quotient rule and the result from Exercise 2, prove that $\mathbb{P} \setminus \{0\} \supset \pi_{+} \setminus [1]$ has derivative $\mathbb{P} \setminus \{0\} \supset \pi_{+} \setminus [n]^{-1}$
another example, $(p_3 \circ (p_2+7))' = (3p_2 \circ (p_2+7))2p_1 = 6p_1(p_2 \circ (p_2+7)),$	prove that $\mathbb{R} \setminus \{0\} \ni x \mapsto \frac{1}{x^n}$ has derivative $\mathbb{R} \setminus \{0\} \ni x \mapsto -n \frac{1}{x^{n+1}}$.
1.e. $\frac{d}{dx}(x^2+7)^3 = 3(x^2+7)^2 2x = 6x(x^2+7)^2$ for all $x \in \mathbb{R}$.	Exercise 4. Using the inverse function theorem and the result from Exercise 2, prove that $(0, z_2) \ge n + \frac{1}{n} \ln z_2$ and $(0, z_2) \ge n + \frac{1}{n} \ln z_2$
Theorem 4. Let $f, g: \mathbb{R} \to \mathbb{R}$ be differentiable functions with $g(x) \neq 0$	Exercise 2, prove that $(0,\infty) \ni x \mapsto x$ has derivative $(0,\infty) \ni x \mapsto \frac{1}{2} r^{(1-n)/n}$
for any $x \in \mathbb{R}$. Then $\frac{1}{g}$ is differentiable and its derivative is given by	
$\left(\frac{f}{g}\right)(x) = \frac{f(x)g(x) - g(x)f(x)}{(g(x))^2} \text{ for all } x \in \mathbb{R}.$	Exercise 5. Using the chain rule and the results from Exercises 2 and 4 prove that if $m, n \in \mathbb{N}$ the function $f: (0, \infty) \supset m \mapsto m^{m/n}$ is
This theorem is called the <i>quotient rule</i> . The following proof is an	differentiable and its derivative is given by $f'(x) = \frac{m}{2} x^{(m-n)/n}$ for all
illuminating application of the chain rule.	$x \in (0,\infty).$
<i>Proof.</i> Let $h : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be given by $\mathbb{R} \setminus \{0\} \ni x \mapsto h(x) := \frac{1}{x}$.	Exercise 6 Using the quotient rule, prove $\tan' = \frac{1}{2}$. Be sure to
Since g is never zero, $\mathbb{R} \setminus \{0\}$ can be taken to be the target of g. Hence,	include the domain of \tan' .
the function $\frac{1}{g} : \mathbb{R} \ni x \mapsto 1/g(x)$ is the composition $\mathbb{R} \stackrel{h}{\leftarrow} \mathbb{R} \setminus \{0\} \stackrel{g}{\leftarrow}$	Examples 7 Drow a graph of and $[0, -1, 1, [-1, 1]]$
\mathbb{R} . Using $h'(x) = -\frac{1}{2}$ and the chain rule, $\left(\frac{1}{2}\right)'(x) = (h \circ a)'(x) =$	EXERCISE (. Draw a graph of $\cos : [0, \pi] \to [-1, 1]$ to convince yourself that it is invertible. The inverse of \cos is denoted by precess and is a
g'(x)h'(x(x)) = g'(x) Finally analysis of the second se	$\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$
μ_{1} μ_{2} μ_{3} μ_{3	function $\arccos: -1, 1 \to 0, \pi $. What is the largest subset $A \subseteq 0, \pi $
$g(x)n(g(x)) = (g(x))^2$. I many, applying this result and the product	function $\arccos : [-1, 1] \to [0, \pi]$. What is the largest subset $A \subseteq [0, \pi]$ such that $\cos : A \to [-1, 1]$ satisfies the assumptions in the inverse
rule gives $\left(\frac{f}{g}\right)'(x) = \left(f\frac{1}{g}\right)'(x) = f'(x)\frac{1}{g(x)} + f(x)\left(\frac{1}{g}\right)'(x) = \frac{f'(x)}{g(x)} - \frac{f'(x)}{g(x)} + f(x)\left(\frac{1}{g}\right)'(x) = \frac{f'(x)}{g(x)} - \frac{f'(x)}{g(x)} + f'(x$	function $\arccos : [-1, 1] \to [0, \pi]$. What is the largest subset $A \subseteq [0, \pi]$ such that $\cos : A \to [-1, 1]$ satisfies the assumptions in the inverse function theorem? What is the domain $B \subseteq [-1, 1]$ such that $\arccos :$
$g'(x)h'(g(x)) = \frac{f'(x)g(x)}{(g(x))^2} = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2} = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2} = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2} \text{ for all } x \in \mathbb{R}.$	function $\arccos : [-1, 1] \to [0, \pi]$. What is the largest subset $A \subseteq [0, \pi]$ such that $\cos : A \to [-1, 1]$ satisfies the assumptions in the inverse function theorem? What is the domain $B \subseteq [-1, 1]$ such that $\arccos : B \to A$ is differentiable? Compute the derivative of arccos over this

Math 1151Q Honors Calculus I Arthur Parzygnat Week $\#05$	Hyperbolic functions
The exponential and logarithm	The hyperbolic sine and cosine func-
The exponential function $\exp : \mathbb{R} \to \mathbb{R}$ can be defined in several ways:	tions sinh, cosh : $\mathbb{R} \to \mathbb{R}$ are defined $3^{\frac{1}{2}}$ sinh
$\int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} $	by $\sinh(x) := \frac{e^{-e}}{2}$ and $\cosh(x) := 2$
1. the power series $\exp(x) = \sum_{k=0}^{\infty} \frac{1}{k!}$ for all $x \in \mathbb{R}$	$\frac{c-1}{2}$ for all $x \in \mathbb{R}$. <u>Hyperbolic</u> tangent tanh : $\mathbb{R} \to \mathbb{R}$ is defined by
ii. the (unique) differentiable function satisfying $\exp' = \exp$ and	the ratio $\tanh := \frac{\sinh}{\ln}$. The other
$\exp(0) = 1$	hyperbolic functions can be defined $\overrightarrow{-3}$ $\overrightarrow{-2}$ $\overrightarrow{-1}$ $\overrightarrow{1}$ $\overrightarrow{2}$ $\overrightarrow{3}$
iii the limit $\exp(x) = \lim_{x \to \infty} \left(1 + \frac{x}{2}\right)^n$ for all $x \in \mathbb{R}$	analogously to how the trigonomet-
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	ric functions are defined as appropri- ate ratios. Although the graph may -2
equivalence between any of these definitions is a little beyond our cur-	be misleading, there are no vertical
rent capabilities and would require us to discuss series, integrals, and	asymptotes for sinh, cosh, tanh. $/-3$ +
interchanging limits. Instead, we will take these for granted and point	A quick calculation shows that $\cosh' = \sinh$ and $\sinh' = \cosh$.
out that naively differentiating the power series definition shows that i.	Hence, $\tanh' = \left(\frac{\sinh n}{\cosh}\right) = \frac{\cosh - \sinh n}{\cosh^2}$ by the quotient rule. While
implies ii. Indeed, $\frac{a}{dx} \left(\sum_{k=0}^{\infty} \frac{x}{k!} \right) = \sum_{k=0}^{\infty} \frac{a}{dx} \left(\frac{x}{k!} \right) = \sum_{k=1}^{\infty} \frac{kx}{k!} =$	$\cos^2 + \sin^2 = 1$, the hyperbolic version of this identity states (ex-
$\sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!} = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$	formulas into the definitions of the hyperbolic functions and using the
$3 \div \exp/$ It is a fact that the exponential	properties of the logarithm and the exponential, one can show that
function is always positive and one-	the inverses of these functions are given by
2 to-one. In fact, exp : $\mathbb{K} \to (0,\infty)$ is a differentiable bijection	i. $\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$ for all $x \in \mathbb{R}$,
1 $(0,\infty)$ is a university objection whose derivative vanishes nowhere.	ii. $\cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1})$ for all $x \in [1, \infty)$.
Therefore, it has a differentiable	(u) = (u) = (u) = (u + v) = (1 + v)
-3 -2 -1 1 2 3 inverse ln : $(0,\infty) \to \mathbb{R}$ called	111. $\tanh^{-1}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$
-1 the <u>(natural) logarithm</u> and its derivative by the inverse function	Hyperbolic functions can be used to describe the curve of a hanging
tion theorem, is given by $\ln'(u) =$	rope or chain affected by a uniform gravitational field (see Week $\#01$
$\frac{-2}{\exp^{1/(\ln(y))}} = \frac{1}{\exp^{1/(\ln(y))}} = \frac{1}{y}$ for all	handout).
$-3 \qquad \qquad -3 \qquad $	Exercises
Warning: because exp is never zero, it has a <i>multiplicative</i> inverse,	
1.e. there is a function h such that $h \exp = 1$, where I denotes the constant function whose value is 1 for all values of $r \in \mathbb{R}$. Of course	Exercise 1. A set of functions $\{j_1, j_2, \dots, j_n\}$ is <i>intearry integendent</i> iff the only numbers $a_1, a_2, \dots, a_n \in \mathbb{R}$ satisfying $a_1, f_1 + a_2, f_2 + \dots + a_n$
this function is $\frac{1}{2}$ and is not to be confused with \ln . For shorthand,	$a_n f_n = 0$ (the zero function) is $a_1 = a_2 = \cdots = a_n = 0$. Find a
we often write $e^x := \exp(x)$ and $e^{-x} := \frac{1}{\exp(x)}$.	set of four linearly independent functions $\{f_1, f_2, f_3, f_4\}$ whose fourth
The exponential and logarithm functions have many important prop-	derivative equal themselves, i.e. $f_k^{(4)} = f_k$ for all $k \in \{1, 2, 3, 4\}$.
erties. This includes $e^{x+y} = e^x e^y$ for all $x, y \in \mathbb{R}$. From this single	Exercise 2. Compute the derivatives of all six hyperbolic functions.
crucial property, the usual laws for logarithms follow. For example,	Then compute their inverses by choosing suitable domains and prove
this equality implies $\ln(e^{x+y}) = \ln(e^x e^y)$ for all $x, y \in \mathbb{R}$. But	that they are in fact the inverses. Compute the derivatives of the
$\ln(e^{x+y}) = x+y = \ln(e^x) + \ln(e^y)$ by definition of the logarithm as the inverse of exp. Hence, $\ln(e^x e^y) = \ln(e^x) + \ln(e^y)$ for all $x, y \in \mathbb{R}$. Since	inverses. Graph all of your results. Be sure to indicate which theorems
exp: $\mathbb{R} \to (0, \infty)$ is a bijection, this shows that $\ln(ab) = \ln(a) + \ln(b)$	you are using.
for all $a, b \in (0, \infty)$. By similar, but careful, analysis, one can also	Exercise 3. Find the domains of the following functions and their
show $\ln(a^b) = b \ln(a)$ for all $a \in (0, \infty)$ and $b \in \mathbb{R}$.	derivatives. Find explicit formulas for their derivatives indicating which theorems you use
In a previous exercise, you proved that $\frac{d}{dx}x^r = rx^{r-1}$ for any positive	
rational number r and for any $x \in (0, \infty)$. By using $\frac{d}{dx} \frac{1}{x} = \frac{-1}{x^2}$ and the	i. $x \mapsto \ln\left(\frac{1}{8\pi} + \cos^2(x)\right)$
chain rule, this can be extended to any rational number (exercise!). Although it might not seem to make some to take the π th power	ii. $x \mapsto \tan\left(\frac{\pi}{2} \tanh(x)\right)$
of another number, the functions $(0,\infty) \ge r_{1} \stackrel{f}{\longrightarrow} r_{2}^{y} \stackrel{g}{\longrightarrow} u \in \mathbb{P}$ can	iii. $x \mapsto \tan\left(\frac{\pi-\epsilon}{2} \tanh(x)\right)$, where $0 < \epsilon < 1$
be defined. Furthermore, f and g are both differentiable on their	iv. $x \mapsto \tan\left(\frac{\pi+\epsilon}{2} \tanh(x)\right)$, where $0 < \epsilon < 1$
domains. As you can imagine, due to the asymmetry, these derivatives	v. $x \mapsto \tanh(\tan(x))$
are probably different. Using logarithms and the chain rule, we can	vi. $x \mapsto e^{\sin^3(x)}$
compute $f'(x)$ and $g'(y)$. Applying the logarithm to both sides gives $(\ln \alpha f)(x) = \alpha \ln(x) = (\ln \alpha g)(x)$. Taking the derivatives with respect	vii $x \mapsto \ln(\cosh(x) - 1)$
to x and y give two separate equations, namely $(\ln \circ f)'(x) = \frac{y}{2}$ and	$\begin{array}{c} \text{in} x \mapsto (\operatorname{ein}(x))^{\cos(3)} \end{array}$
$(\ln \circ g)'(y) = \ln(x)$, respectively. Applying the chain rule to the first	$\frac{1}{2}$
and second gives $f'(x) = yx^{y-1}$ and $g'(y) = \ln(x)x^y$, respectively. In	$1X. x \mapsto x$
short, $\frac{d}{dx}x^y = yx^{y-1}$ and $\frac{d}{dy}x^y = \ln(x)x^y$.	x. $x \mapsto \tan(2^{-1})$
A crude model for the number of <i>E. coli</i> bacteria in a petri dish states	xi. $x \mapsto \tanh^{-}(\cos(x))$
that the quantity doubles every hour, i.e. is given by the function $N = \begin{bmatrix} 0 & \infty \\ \infty & 0 \end{bmatrix} \xrightarrow{T} t \to N \xrightarrow{T} where N \subset \mathbb{N}$ is the initial concentration and	xii. $x \mapsto \tanh\left(\ln\left(\frac{1}{ x }\right)\right)$
$t : [0, \infty) \rightarrow t \mapsto t_{0,2}$ where $t_{0,0} \in \mathbb{N}$ is the initial concentration and $t \in [0, \infty)$ is given in hours. The rate of growth of the bacteria is	xiii. $x \mapsto 2e^{-x^2}$
given by the derivative, which is $N'(t) = N_0 \ln(2)2^t$ for all $t \in [0, \infty)$.	····

The Implicit Function Theorem (IFT) provides a way of expressing part of a level set of $f : \mathbb{R}^2 \to \mathbb{R}$ as the graph of a function. In what follows, let $(a,b) \in \mathbb{R}^2$ and let $\partial_1 f(a,b) := \frac{d}{dx} f(x,b)$ denote the <u>partial derivative</u> of f with respect to the first variable evaluated at (a, b). Similarly, let $\partial_2 f(a, b) := \left. \frac{d}{dy} f(a, y) \right|_{y=b}$ denote the partial derivative of f with respect to the second variable evaluated at (a, b). **Theorem 1.** Fix $c \in \mathbb{R}$, let $f : \mathbb{R}^2 \to \mathbb{R}$ be a continuously differentiable function, and let $(a,b) \in \mathbb{R}^2$ be a point satisfying f(a,b) = c and $\partial_1 f(a,b) \neq 0$ (or $\partial_2 f(a,b) \neq 0$). Then there exists an open interval (α,β) , a point $\gamma \in (\alpha,\beta)$, and a function $g: (\alpha,\beta) \to \mathbb{R}$ (or h $(\alpha, \beta) \to \mathbb{R}$) with the following properties:

i. g (or h) is continuously differentiable,

ii. $g(\gamma) = c$ (or $h(\gamma) = c$), and

iii. $f(x,g(x)) = c \ \forall \ x \in (\alpha,\beta) \ (or \ f(h(y),y) = c \ \forall \ y \in (\alpha,\beta)).$

The function $(\alpha, \beta) \ni x \mapsto g(x)$ is obtained by solving for y as a function of x in the expression f(x, y) = c (for the second situation, $(\alpha, \beta) \ni y \mapsto h(y)$ is obtained by solving for x as a function of y in the expression f(x, y) = c. This final condition in this theorem says that the composition $\mathbb{R} \stackrel{f}{\leftarrow} (\alpha, \beta) \times \mathbb{R} \stackrel{(\mathrm{id},g)}{\leftarrow} (\alpha, \beta)$ is the constant function whose value is c at all points in the interval (α, β)

Let $\mathbb{R}^2 \ni (x, y) \xrightarrow{f} x^2 + y^2$ and let c := 5 so that $f^{-1}(\{c\})$ is the circle of radius $\sqrt{5}$ centered at (0,0) in \mathbb{R}^2 . Let $(a,b) = (1,2) \in f^{-1}(\{c\})$. Then $\left| \frac{d}{dy} f(1,y) \right|_{y=2} = \left| \frac{d}{dy} (1+y^2) \right|_{y=2} =$ $2y\Big|_{y=2} = 4 \neq 0$. Solving for y as a function of x in the expression $^{-2}$ $x^2 + y^2 = 5$ gives two solutions $g(x) = \sqrt{5-x^2}$ and $g(x) = -\sqrt{5-x^2}$ for $x \in (\alpha, \beta) := (-\sqrt{5}, \sqrt{5})$ Since we require some $\gamma \in (-\sqrt{5}, \sqrt{5})$ such that $g(\gamma) =$ this forces us to choose the first option where $\gamma = \pm 1$ so that $\sqrt{5-1^2} = \sqrt{4} = 2$ as needed. If our point had been (1,-2), we would have chosen $(-\sqrt{5},\sqrt{5}) \ni x \mapsto g(x) = -\sqrt{5-x^2}$ instead. Because $\frac{d}{dx}f(x,2)\Big|_{x=1} = \frac{d}{dx}(x^2+4)\Big|_{x=1} = 2x\Big|_{x=1} = 2 \neq 0$, we could have also solved for x in terms of y and we'd get the function V in terms of the function V in terms of the function V is $V = \frac{1}{3}\pi r^2 h$. For a cone, the radius and height are related via $\frac{r}{h} = \frac{5}{11}$ due to similarity of triangles. Hence, $r = \frac{5}{11}h$. Therefore, $V = \frac{25}{363}\pi h^3$. Each of these quantities are changing as a function of time. Hence $(-\sqrt{5},\sqrt{5}) \ni y \mapsto h(y) = \sqrt{5-y^2}$ and $\gamma = \pm 2$ so that $h(\gamma) = 1$ Finally, if our point had been $(a,b) = (\sqrt{5},0), \left. \frac{d}{dy} f(\sqrt{5},y) \right|_{y=0} = 0$ so that we would not be able to solve for y in terms of x. However, $\left. \frac{d}{dx}f(x,0) \right|_{x=\sqrt{5}} = 2\sqrt{5} \neq 0$ so that we can solve for x in terms of y This gives $(-\sqrt{5},\sqrt{5}) \ni y \mapsto h(y) = \sqrt{5-y^2}$

Week #06 The IMT combined with the chain rule allows us to obtain q'(x)(or h'(y)). Since the composition $\mathbb{R} \xleftarrow{f} (\alpha, \beta) \times \mathbb{R} \xleftarrow{(\mathrm{id}, g)} (\alpha, \beta)$ (or $\mathbb{R} \stackrel{f}{\leftarrow} \mathbb{R} \times (\alpha, \beta) \stackrel{(h, \mathrm{id})}{\leftarrow} (\alpha, \beta)$) is constant, the derivative of this composition is 0. The chain rule (when generalized to functions of several variables) can be applied to each function so that we can solve for the derivative of g (or h). These functions provides us with Jacobian matrices, which we multiply to obtain $\begin{array}{ll} (D_{(x,g(x))}f) \circ (D_x(\mathrm{id},g)) &= \left[\partial_1 f(x,g(x)) & \partial_2 f(x,g(x))\right] \begin{bmatrix} 1\\g'(x) \end{bmatrix} \\ \left[\partial_1 f(x,g(x)) + g'(x)\partial_2 f(x,g(x))\right] & (\mathrm{or} & (D_{(h(y),y)}f) \\ (D_y(h,\mathrm{id})) &= \left[\partial_1 f(h(y),y) & \partial_2 f(h(y),y)\right] \begin{bmatrix} h'(y)\\1 \end{bmatrix}$ $[\partial_1 f(h(y), y)h'(y) + \partial_2 f(h(y), y)])$. Because $(\alpha, \beta) \ni x \mapsto f(x, g(x)) =$ c is constant, this derivative equals zero and we have the equation $\partial_1 f(x, g(x)) + g'(x) \partial_2 f(x, g(x)) = 0$. This allows us to solve for g'(x) provided that $\partial_2 f(x, g(x))$ does not vanish and it is given by $g'(x) = -\frac{\partial_1 f(x,g(x))}{\partial_2 f(x,g(x))}$ for all $x \in (\alpha,\beta)$ (or $h'(y) = -\frac{\partial_2 f(h(y),y)}{\partial_1 f(h(y),y)}$ for all $y \in (\alpha, \beta)$) The usefulness of this result is that it is not always easy to obtain an explicit formula for g (or h) and it is therefore not always easy to explicitly take its derivative. For this reason, computing the

derivative using the chain rule as via this method is called *implicit* differentiation. [Reference: Herb Gross: II.5 Implicit Dufferentiation]

The tangent line to the level set $f^{-1}(\{5\})$ at the point (1, 2) for the function $\mathbb{R}^2 \ni (x, y) \stackrel{f}{\mapsto} x^2 + y^2$ is obtained by differentiating $x^2 +$ $(g(x))^2 = 5$ with respect to x and using the chain rule to obtain 2x +2g(x)g'(x) = 0. Solving for g'(x)gives $g'(x) = -\frac{x}{g(x)}$. Plugging in x = 1 (so that g(1) = 2) gives $g'(1) = -\frac{1}{2}$, which is the slope of

the tangent line. Because this line must intersect the point (1, 2), the equation describing this line is $\mathbb{R} \ni x \mapsto y(x) = -\frac{1}{2}x + \frac{5}{2}$ (this formula was obtained by finding b from y = mx + b since we know y, x, and m). One could have also obtained this same result by differentiating $(h(y))^2 + y^2 = 5$ with respect to y to get $h'(y) = -\frac{y}{h(y)}$ and plugging in y = 2 to get h'(y) = -2 which gives the equation $\mathbb{R} \ni y \mapsto x(y) =$ -2y + 5 which is equivalent to our formula for y in terms of x. What happens if we try to find the tangent line at the point $(\sqrt{5}, 0)$? As we noticed before, we cannot solve for y as a function of x so we must instead solve for x as a function of y. This gives us $h'(0) = -\frac{0}{\sqrt{5}} = 0$ (if we had tried to implicitly differentiate with respect to x, we would have obtained $g'(\sqrt{5}) = -\frac{\sqrt{5}}{0}$, which is undefined) and therefore gives the tangent line to be $\mathbb{R} \ni y \mapsto x(y) = \sqrt{5}$.

Related rates

A cone-shaped water tank is being filled with water at a rate of 2 cubic meters per minute. The base of the tank is 5 meters in radius and the height of the tank is 11 meters. Find the rate at which the water level is rising when the water is 7 meters deep. What is the rate when the water level is 3 meters deep?

Each of these quantities are changing as a function of time. Hence, the derivative is given by $V' = \frac{25}{121}\pi h^2 h'$. Since the flow of water is constant, this gives $2 = \frac{25}{121}\pi (3)^2 h'$ so that $h' = \frac{242}{225\pi} \approx 0.34$ meters per minute when the water level is 3 meters deep. When the water level is 7 meters deep, it is $\left(\frac{3}{7}\right)^2$ times this amount giving $h' = \frac{242}{1225\pi} \approx 0.063$ meters per minute.

A record is 25 centimeters in diameter and rotates at 78 rotations per	Differentials*
minute. There is a chip at the edge of the record. At what rate (in cm per minute) is the chip moving vertically when it is 5 centimeters above the horizontal axis? Answer. The height h as a function of the angle is given by $h(\theta) = R \sin(\theta)$, where $R = 25$ cm. The angle is a function of time and we wish to compute $\frac{dh}{dt}$. Differentiating with respect to t gives $\frac{dh}{dt} = R \cos(\theta) \frac{d\theta}{dt}$. Note that $R \cos(\theta) = \sqrt{R^2 - h^2}$ for small angles so that this becomes $\frac{dh}{dt} = \sqrt{R^2 - h^2} \frac{d\theta}{dt}$. Since $\frac{d\theta}{dt} = 78(2\pi) = 156\pi$ radians per minute, this gives $\frac{dh}{dt} = 156\pi\sqrt{600} = 1560\pi\sqrt{6} \approx 12000$ cm per minute, i.e. 12 meters per minute.	Consider the associative unital algebra Ω^* over \mathbb{R} generated by the two symbols dx and dy subject to the relation $(dx)^2 = 0 = (dy)^2$ and dxdy = -dydx. A basis for this algebra viewed as a vector space is $\{1, dx, dy, dxdy\}$. Let $C^{\infty}(\mathbb{R}^2)$ denote the set of <u>smooth</u> , i.e. infinitely differentiable, functions $\mathbb{R}^2 \to \mathbb{R}$. The set of <u>(smooth)</u> differential forms on \mathbb{R}^2 is the tensor product $\Omega(\mathbb{R}^2) := C^{\infty}(\mathbb{R}^2) \otimes \Omega^*$, i.e. formal sums of elements of the basis with smooth functions as coefficients. In this case, they are all of the form $f + g_1 dx + g_2 dy + h dx dy$ for some smooth functions $f, g_1, g_2, h : \mathbb{R}^2 \to \mathbb{R}$. This is analogous to linear combinations of elements of a vector space basis except that the coef- ficients are functions instead of numbers. Define $d : \Omega(\mathbb{R}^2) \to \Omega(\mathbb{R}^2)$
Linear approximation	to be the linear map uniquely determined by
The derivative of a differentiable function at a point can be used to learn a lot about the function in a neighborhood of that point. In all of the examples we have seen, the tangent line to a curve seems to be a reasonable linear approximation to the curve provided that one is close	i. $df = \partial_1 f dx + \partial_2 f dy$ for all $f \in C^{\infty}(\mathbb{R}^2)$ and ii. $d(f + g_1 dx + g_2 dy + h dx dy) = df + dg_1 dx + dg_2 dy + dh dx dy$ for all $f, g_1, g_2, h \in C^{\infty}(\mathbb{R}^2)$.
enough to that curve. Let $f : (a, b) \to \mathbb{R}$ be a differentiable function on an open interval and let $c \in (a, b)$. The linear function $L : (a, b) \to \mathbb{R}$ given by $(a, b) \ni x \mapsto f'(c)x + f(c) - f'(c)c = f(c) + f'(c)(x-c)$ is called	$\begin{aligned} a(d_f) &= a(\partial_1 f dx + \partial_2 f dy) = a(\partial_1 f) dx + a(\partial_2 f) dy = \partial_1 f dx dx + \\ \partial_2 \partial_1 f dy dx + \partial_1 \partial_2 f dx dy + \partial_2^2 f dy dy = (\partial_1 \partial_2 f - \partial_2 \partial_1 f) dx dy = 0 \text{ for} \\ \text{all } f \in C^{\infty}(\mathbb{R}^2). \end{aligned}$
the <u>linearization of f at c</u> . The difference $(a,b) \ni x \mapsto L(x) - f(x) $ is called the deviation and sup $ L(x) - f(x) $ is called the accuracy	Exercises
Here $\sup_{x \in (a,b)} g(x)$ denotes the lowest upper bound, a number u such that $g(x) \leq u$ for all $x \in (a,b)$ and such that for any other number v ,	Exercise 1. A spherical tank with radius r_0 is filled with water at a rate of R gallons per minute. How quickly is the water level rising when the depth of the water is d ?
the inequality $u \leq v$ holds. Linearizing $\ln : (0, \infty) \to \mathbb{R}$ at $c = e^2$ gives $(0, \infty) \ni x \mapsto L(x) = 2 + e^{-2}(x - e^2) = 1 + e^{-2}x$. Since $e \approx 2.72$, this linear approximation of \ln at 9 gives approximately $L(9) \approx 1 + \frac{9}{7.40} \approx 2.22$, which is very close to the real value $\ln(9) \approx 2.20$ as the deviation is only about 0.02.	Exercise 2. Provide two qualitatively different counter-examples to the IMT when any of the assumptions fail. Namely, what happens if there is a point $(a,b) \in \mathbb{R}^2$ such that $f(a,b) = c$ but for which $\frac{d}{dx}f(x,b)\Big _{x=a} = 0$ and $\frac{d}{dy}f(a,y)\Big _{y=b} = 0$? Can a tangent line be drawn to the level set $f^{-1}(\{c\})$ at the point (a,b) in these cases? Explain.
$\begin{array}{c} 3\\ 2\\ 1\\ 1\\ 2\\ 2\\ 4\\ 6\\ 8\\ 10\\ 12\\ 14 \end{array}$	Exercise 3. Plot the level sets $f^{-1}(\{c\})$ of the function $\mathbb{R}^2 \ni (x,y) \stackrel{f}{\mapsto} 25(x^2 - y^2) - 2(x^2 + y^2)^2$ for the various values of $c \in \{-100, -50, -25, 0, 25, 50, 75\}$. What happens when $c = 80$? Discuss the possibility of being able to draw a line tangent to the level set $f^{-1}(\{0\})$ at the point $(0, 0)$.
However, it is apparent from the graph that L is a worse approximation for inputs less than e^2 . For example, to obtain an accuracy of about 0.1, we would need to find an interval (a, b) for which $\sup 1 + e^{-2}x - \ln(x) \le 0.1$. It is not possible to obtain a closed	Exercise 4. An experiment is done where mixed dough and yeast is placed between glass plates of thickness L and the dough of mass m ferments and expands with the area and density related by $\rho(t) = \frac{m}{LA(t)}$ where t is time. Suppose the area as a function of time is given by $A(t) = a_0(1 + c \tanh(t))$, where $a_0 > 0$ is the initial area and c is a constant determined by how much yeast and dough is initially in the mixture. What is the rate at which the density decreases when the area of the dough is a ?
$x \in (a,b)$ form expression for this since one must solve $1 + e^{-2}x - \ln(x) = 0.1$. There are two solutions to this equation (that can be obtained numerically) and they are approximately $x = 4.558$ and $x = 11.203$. Hence, the approximation L is valid to within 0.1 accuracy on the interval (4.558, 11.203). Notice that the difference between 4.558 and e^2 is 2.831 while the difference between e^2 and 11.203 is 3.814 showing that the linearization is a better approximation for values larger than e^2 than it is for values smaller than e^2 .	Exercise 5. Prove the function $\mathbb{R} \ni x \xrightarrow{f} \begin{cases} 0 & \text{if } x = 0 \\ x^2 \sin\left(\frac{1}{x}\right) & \text{otherwise} \end{cases}$ is differentiable. Compute $f'(x)$ for all $x \in \mathbb{R}$. Is f' continuous? Discuss. Exercise 6. Write down the linearization of $\ln : (0, \infty) \to \mathbb{R}$ at the point $c = e$ (e is Euler's constant) and draw the graph of \ln together with the graph of the linearization. Over what interval is the accuracy 0.1? Compare the size of this interval to the size of the interval obtained from linearizing $\ln a$ the point e^2 . Bepeat at the point $c = 1$
To estimate 1.999 ⁴ note that $2^4 = 16$ and $\frac{d}{dx}x^4 = 4x^3$ so that the linearization of p_4 at $c = 2$ is $\mathbb{R} \ni x \mapsto L(x) = p_4(2) + p'_4(2)(x-2) = 2^4 + 4(2^3)(x-2) = 16 + 32(x-2)$. Hence, $1.999^4 \approx L(1.999) = 16 + 32(-0.001) = 16 - 0.032 = 15.968$ (notice we didn't need a calculator). To estimate $9^{1.99}$ note that $9^2 = 81$ and $\frac{d}{dx}9^x = \ln(9)9^x$ so that the linearization of $x \mapsto 9^x$ at $c = 2$ is $L(x) = 81 + 81\ln(9)(x-1.99) \approx 81 + 81(2.22)(-0.01) \approx 81 - 1.78 = 79.22$ which is quite close	Hint: use Desmos, the online graphing calculator! Exercise 7. Write down the linearization of $\sin : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ at the point $\theta = 0$ and draw the graph of sin together with the graph of the linearization. Over what interval is the accuracy 0.1? Repeat for the function $\cos : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$. Hint: use Desmos, the online graphing calculator! Exercise 8. Explain why the functions arctan and tanh are good
to the actual value $9^{1.99} \approx 79.24$. Here, we have used our earlier approximation of $\ln(9)$.	approximations of each other in a neighborhood of 0. Compute their accuracy over the intervals $(-1, 1)$ and $(-\frac{1}{2}, \frac{1}{2})$.

Math 1151Q Honors Calculus I Week #07	Making fat stacks
Physics	Suppose that x_0 dollars are invested at an interest of r ($r = 0.09$
The infinitesimal change in position x of a particle over an infinites-	means at 9%) that is compounded annually. The value $x(t)$
imal change in time is the velocity of that particle $v(t) := \frac{dx(t)}{dt}$. A	of the investment after t years is given by $x(t) = x_0(1+r)^t$.
particle of mass m is thrown straight down off a cliff. Its change in	If the interest is compounded n times per year, then the
velocity over an infinitesimal change is its acceleration $a(t) := \frac{dv(t)}{dt}$	value is $x(t) = x_0 \left(1 + \frac{r}{n}\right)^n$. As <i>n</i> increases, this tends to
and Newton's law says that $F = ma$, the force on the particle of	$(1, r)^{nt}$ $((1, 1)^{n/r})^{rt}$ rt $(1, 1)^{n/r}$
mass m is proportional to its acceleration. Ignoring air resistance,	$\lim_{n \to \infty} x_0 \left(1 + \frac{1}{n} \right) = \lim_{n/r \to \infty} x_0 \left(\left(1 + \frac{1}{n/r} \right) \right) = x_0 e^{rt}.$ Already
the differential equation describing a mass being thrown down a aliff is may $max = m^2 m^2 q^2$ where a is the gravitational constant on	for $n = 365$, which corresponds roughly to compounding the interest
Earth The solution to this equation is $v(t) = v_0 + at$ and the	daily, this is a good approximation. Now imagine that x_0/n dollars
position is $x(t) = -h_0 + v_0 t + \frac{1}{2} a t^2$ valid for all time t. Here h_0 is	are invested at the same rate as the interest is compounded (so once
the initial height and v_0 is the initial velocity. You should verify this	$\sum_{n=1}^{n} x_0 \left(1 + r \right)^k$
by computing the derivatives and checking they solve the differential	per year in $n = 1$). The value after t years is then $\sum_{k=1}^{n} \frac{n}{n} \left(1 + \frac{n}{n}\right)^{k} =$
equation. Notice that the position does not depend on mass. Does	$r_0 \left(\left(1 + \frac{r}{r}\right)^{nt+1} - 1 \right)$ $r_0 \left(r_1 + \frac{r}{r}\right)^{n-1} \left(r_1 + \frac{r}{r}\right)^{n-1}$
the position still not depend on mass if there is air resistance?	$\left(\frac{x_0}{n}\left(\frac{(1+n)}{(1+\frac{r}{n})-1}-1\right)\right) = \frac{x_0}{r}\left(1+\frac{r}{n}\right)\left(\left(1+\frac{r}{n}\right)-1\right).$
For a mass dropping off a cliff and being pulled due to gravity	Taking the limit as $n \rightarrow \infty$ gives ("inc" stands for increment
but also being repelled by air resistance, the differential equation describing this motion is $ma_{1} - ma_{2}^{2} - ma_{2} - ma_{3}^{2} - ma_{4}^{2}$ where a is the	Taking the limit as $n \to \infty$ gives (life stands for increment nt
gravitational constant on Earth and γ is a coefficient describing the	(investments) $x_{inc}(t) = \lim_{n \to \infty} \sum \frac{x_0}{n} \left(1 + \frac{r}{n}\right)^n = \frac{x_0}{n} \left(e^{rt} - 1\right)$
strength of the air resistance. One can solve this equation for the	and gives an approximate for the value often t years. Compare
velocity and then integrate to find the position. The result for the	this to somebody who invests r_0 at the beginning of each year
position is $x(t) = -h_0 + \frac{m}{2} \ln \left(\cosh \left(t \sqrt{\frac{\gamma g}{m}} + \operatorname{arctanh} \left(v_0 \sqrt{\frac{\gamma}{m}} \right) \right) \right) -$	but who experiences interest at an annual rate r compounded
$ \frac{1}{m} \left[\left(\frac{1}{2} + \frac{1}{m} \right) \left(\frac{1}{m} + \frac{1}{m} \right) \right] $	n times per year. The value of their investment after t years
$\frac{m}{\gamma}$ in $\left(\cosh\left(\arctan\left(v_0\sqrt{\frac{m}{mg}}\right)\right)\right)$, where n_0 is the initial height and	$\int_{1}^{t} (r)^{nk} \left(\left(1 + \frac{r}{r} \right)^{n(t+1)} - 1 \right)$
v_0 is the initial velocity. Computing the derivatives, we can verify this	becomes $x_0 \sum \left(1 + \frac{1}{n}\right) = x_0 \left(\frac{1 + \frac{1}{n}}{\left(1 + \frac{r}{n}\right)^n - 1} - 1\right) =$
solves the differential equation. The derivative of the position is (using	$ \begin{pmatrix} k=1 \\ (1+r)^n \end{pmatrix} (1+r)^n \end{pmatrix} $
the chain rule twice) $v(t) = \frac{dx(t)}{dt} = \frac{m}{\gamma} \frac{dt}{\cosh(t\sqrt{\frac{\gamma g}{m}} + \arctan(v_0\sqrt{\frac{\gamma g}{mg}}))} =$	$x_0\left(\frac{(1+\frac{r}{n})}{(1+\frac{r}{n})^n-1}\right)\left(\left(1+\frac{r}{n}\right)^m-1\right)$. The limit of this expres-
$\sqrt{\frac{mg}{\gamma}} \tanh\left(t\sqrt{\frac{\gamma g}{m}} + \operatorname{arctanh}\left(v_0\sqrt{\frac{\gamma}{mg}}\right)\right)$ and the derivative of veloc-	sion as $n \to \infty$ is ("lum" stands for lump yearly investments)
ity is $a(t) = \frac{dv(t)}{dt} = g \operatorname{sech}^2 \left(t \sqrt{\frac{\gamma g}{m}} + \operatorname{arctanh} \left(v_0 \sqrt{\frac{\gamma}{mg}} \right) \right)$. By using	$x_{\text{lum}}(t) = \lim_{r \to \infty} x_0 \sum_{r} \left(1 + \frac{r}{r} \right)^{n\kappa} = x_0 \left(\frac{e^r}{r} \right) \left(e^{rt} - 1 \right).$ The
hyperbolic trigonometric identities, the function $\mathbb{R} \ni t \mapsto x(t)$ solves	$n \to \infty$ $\sum_{k=1}^{n \to \infty} (n)$ $(e' - 1)$
the differential equation. It is interesting to plot these two solutions	person who invests more at the beginning of the year will experience more gains over time. Here is a table for the <i>profit</i> (total value minus
and see what happens as γ approaches 0 from above. This is left as	net invested) of an given investment of \$10000 per year after a total
an exercise. [Reference: Philosophical Math blog]	of t years comparing frequent (daily) deposits versus yearly deposits
Chemistry	assuming an interest rate $r = 0.03$ compounded daily.
Let $\{R_i\}$ and $\{P_i\}$ be finite sets of reactants and prod-	$Time \rightarrow t=1 t=5 t=10 t=20 t=30 t=50$
ucts, respectively. Consider a chemical reaction of the form	every day 151 3944 16619 74039 186534 660563
$R_1 + \dots + R_M \to P_1 + \dots + P_N$. The <u>concentration</u> $[Q]$ of a substance	per year 304 4757 18377 78170 193868 678058
Q is the number of moles (1 mole = 6.022×10^{23} molecules) per liter. During a reaction, the concentration of a reactant on product	Making even fatter stacks
varies as a function of time because the reaction occurs at a rate	An interest rate of $r = 0.03$ is typical of a pretty good CD (certificate
proportional to the amount of reactants available at that time. The	of deposit) at your local bank. The total stock market index, say the
instantaneous rate of reaction of a substance Q is $\frac{d[Q]}{dt}$, the derivative	S&P 500, provides the investor with an average annual return (AAR)
of the concentration $[Q]$ with respect to time. This is negative for	of roughly 9.8% when averaged out over its lifetime (which is at least
products and positive for reactants, i.e. $0 < \frac{d[P_i]}{dt} = -\frac{d[R_j]}{dt}$ for all	70 years). To define the AAR, let $r_k := \frac{x_k - x_{k-1}}{x_k}$ be the yearly rate
i, j. In general, the relationship between the concentration $[P]$ of a	for k-th year, i.e. if x_{k-1} is invested once at the beginning of the k th year and x_{k-1} is the value of the investment at the end of the k th
product and its rate of reaction $\frac{d[P]}{dt}$ is $\frac{d[P]}{dt} = k[P]$, where $k > 0$ is a	k-th year and x_k is the value of the investment at the end of the k-th year then r_i is the unique real number such that $r_i = (1 \pm r_i)r_i$
constant describing the reaction rate.	(the difference $x_k - x_{k-1}$ is called the <i>return</i> in the k-th year). The
Biology	average annual return (AAR) for an index over N years is defined as
The von Bertalanffy growth equation describes the growth of an	$r := \frac{1}{2} \sum_{k=1}^{N} r_k$. Using this AAR, an investor can get a rough estimate
organism. The mass of an organism in the shape of a cube of length	$N \underset{k=1}{\checkmark} $
L and mass <i>M</i> that ingests at a rate proportional to its surface area (food is absorbed through the wells) and respires at a rate	(cf. Exercise 4) for the profit earned from a given investment. We
proportional to its volume (the organism needs to poon) is governed	cannot apply the $n \to \infty$ limit in this case since we are assuming
by the differential equation $\frac{dM}{tr} = aL^2 - bL^3$, where $a, b > 0$ are	yearly compounded interest. The table below compares the profits
constants. Assuming the organism is composed of water, the mass	pounded yearly based on the formula $x(t) = r_0 \left(\frac{1+r}{2}\right) \left((1+r)^t - 1\right)$
is L^3 because the density of water is 1 liter per cubic decimeter.	$\begin{bmatrix} r & r & r \\ r & r $
Hence, $\frac{dM}{dt} = \frac{d}{dt}(L^3) = 3L^2 \frac{dL}{dt}$. This turns the differential equation	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
into $3L^2 \frac{dL}{dt} = aL^2 - bL^3$. After rearranging and cancelling terms, it	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
becomes $\frac{dL}{dt} = \frac{a}{3} - \frac{b}{3}L = k(L_{\infty} - L)$, where $k := \frac{b}{3}$ and $L_{\infty} := \frac{a}{b}$.	-0.030 300 10101 13323 414112 1433123 11390383

Maxima and minima of differentiable fu	ncti	ons	Exercises
Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function, and let $c \in D$. to be	f(c)	is said	Exercise 1. Referring to the physics example of a particle being thrown off of a cliff, let $x(t, \gamma)$ denote the position at time t with
i. the <u>(absolute) maximum</u> of f iff $f(x) \le f(c)$ for all x	$\in D,$		air resistance constant γ . Show that $\lim_{\gamma \searrow 0} x(t,\gamma) = -h_0 + v_0 t + \frac{1}{2}gt^2$
ii. the <u>(absolute) minimum</u> of f iff $f(x) \ge f(c)$ for all x	$\in D,$		for all $t \in \mathbb{R}$.
 iii. a <u>local maximum</u> of f iff f(c) is the maximum on (c – for some ε > 0, and iv. a <u>local minimum</u> of f iff f(c) is the minimum on (c – c) 	$\epsilon, c + \epsilon, c + \epsilon, c + \epsilon$	$(\epsilon + \epsilon) \cap D$ $(\epsilon + \epsilon) \cap D$	Exercise 2. Referring to the chemistry example, consider the reaction $4 \text{ NH}_3 + 3 \text{ O}_2 \longrightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{ O}$, where 4 moles of ammonia reacts with 3 moles of oxygen to form 2 moles of nitrogen and 6 moles of
for some $\epsilon > 0$. [Reference: Herb Gross: II 8 Maxima and Minima]			water. If the instantaneous rate of the reaction is $k > 0$ compute the instantaneous rate of change of the concentrations of ammonia.
It is important to know whether a maximum or minimum given function. The <i>Extreme Value Theorem</i> is one such	ı exist	ts for a	oxygen, nitrogen, and water, in terms of k .
Theorem 1. Let $a, b \in \mathbb{R}$ with $a < b$ and let f : [a continuous. Then f attains a maximum and minimum exist $y, z \in [a, b]$ with $f(y)$ a minimum and $f(z)$ a maximum	, b] → n, i.e. num o	$ \stackrel{\text{enn.}}{\to} \mathbb{R} be \\ there \\ f f. $	Exercise 3. Referring to the biology example of the von Bertalanny growth equation, let L_0 be the initial length of an organism. Show that $[0, \infty) \ni t \mapsto L(t) = L_0 e^{-kt} + L_{\infty}(1 - e^{-kt})$ solves the von Bertalannfy growth differential equation. Sketch a graph of L assuming
The two important assumptions in this theorem is the domain (a closed interval) and the fact that the function	form	of the	that $L_0 < L_{\infty}$. Discuss the significance of this.
contain (a closed interval) and the fact that the funct continuous. If either of these assumptions are removed, false. For example, $(0,1) \ni x \mapsto \frac{1}{x}$ is continuous but is and obtains neither a maximum nor a minimum. The fun $x \mapsto \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{x} & \text{otherwise} \end{cases}$ is defined on a closed interval, is not and does not attain a maximum.	the restunded	inst be esult is bunded $[0,1] \ni$ inuous,	Exercise 4. Suppose that Ian invests x_0 dollars in a mutual fund. Let r_k denote the return rate for the k-th year and suppose that Ian leaves his investment alone for N years. The formula for the value of the investment after N years is given by $x_0(1+r_1)(1+r_2)\cdots(1+r_N)$. Let r denote the AAR over this time period. The approximated value of the investment after N years using the AAR is $x_0(1+r)^N$. Assuming that $r_i r_k r_l$ (the product of three rates) is so small that it can be
Consider the function	R∋	$x \mapsto$	neglected, compute the difference $x_0(1+r_1)(1+r_2)\cdots(1+r_N)-x_0(1+r_N)$
$f(x) := mx + c, \text{ where } n$ $f(x) := mx + c, \text{ where } n$ $f \text{ does not attain its m}$ $f \text{ does not attain } \mathbb{R} (it is the second of the second$	$n, c \in$ hat m aximu unbou d to a im oc ma +	$\mathbb{R}. \text{ For } n > 0.$ $\lim \text{ nor unded}.$ $\lim \text{ closed } curs \text{ at } c \text{ while } c$	r) ¹⁷ . Discuss the significance of this result. Hint: use the binomial expansion theorem. Exercise 5. Consider the same setup as in Exercise 4. Let $N = 5$ and suppose the yearly rates are given as in the following table.
by $f(b) = mb + c$.	and 1	s given	Compute the AAR. Assuming that $x_0 = 10000$ is invested every year, compare the net profit after 5 years using the actual rates provided versus the computed net profit using the AAR over the 5 year period.
<u>Fermat's theorem</u> relates local maxima and minima of a	func	tion to	A net profit that is negative indicates a loss. What permutation of
Theorem 2. Let $f: D \to \mathbb{R}$ be a function on a domain D maximum or minimum at $c \in D$. If $f'(c)$ exists, then $f'(c)$	with $c) = 0$	a local).	the r_k 's results in the largest net profit? What permutation of the r_k 's results in the lowest net profit (greatest loss)? Discuss the significance of this result and compare this result to Exercise 4. In particular, does
The converse of this theorem ("if $f'(c) = 0$ then $f(c)$	e) is a	a local	it matter when the market crashes for the investor who only invests
maximum of minimum) is raise. A counter-example is $\mathbb{R} \ni x \mapsto x^3$ with $c = 0$. Nevertheless, the points at which tive of a function vanish are incredibly important in the	the fu n the study	deriva- of the	once at the beginning (assume \$50000 is invested so that both parties invest the same amount of money)? What are the benefits/drawbacks to investing annually based on these models?
behavior of functions. A <u>critical point</u> of a function f : number $c \in D$ such that $\overline{f'(c)} = 0$ or $\overline{f'(c)}$ does not exist.	$D \rightarrow$	R is a	Exercise 6. Let $r \in \mathbb{R}$. Find all the critical points of the function
Notice that the assumption that " $f'(c)$ exists" cannot from Fermat's theorem. The absolute value function	be di : I	ropped $\mathbb{R} \to \mathbb{R}$	$[0,\infty) \ni x \mapsto f(x) := x^r$ and indicate whether the derivative vanishes or is undefined at these points.
has a local minimum at 0 but is not differentiable at 0.			Exercise 7. Is it possible for a continuous real-valued function f to
Consider the function $[-\pi, 2\pi] \ni x \mapsto f(x) := x - 2\sin(x)$ the absolute maxima and minima of this function? f is c and its derivative is given by $[-\pi, 2\pi] \ni x \mapsto f'(x) :=$	 Wł liffere 1 – 2 	hat are ntiable $2\cos(x)$	be defined on all of \mathbb{R} and have a critical point $c \in \mathbb{R}$ such that $f'(c)$ is not defined? If so, give an example. Otherwise, prove that every function $f: \mathbb{R} \to \mathbb{R}$ that has a critical point $c \in \mathbb{R}$ satisfies $f'(c) = 0$.
so its local maxima and minima are obtained fr $0 = f'(x) = 1 - 2\cos(x)$. The solutions to $\cos(x) = \frac{1}{2}$ for	$x \in [-$	setting $-\pi, 2\pi$]	Exercise 8. The Lennard-Jones potential is a model for the potential describing the interaction between a pair of neutral atoms or molecules.
are given by $x \in \{-\frac{n}{3}, \frac{n}{3}, \frac{n}{3}\}$. The values of f at these polynomials of the domain along with which is the max given in the following table.	and n	and the nin are	Although neutral as a whole, atoms have negatively charged electron clouds surrounding their positively charged nuclei, which create an fraction electronate in a startic line to their a bit of the startic line of the startic l
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.7	1	potential has the form $(0,\infty) \ni r \mapsto V(r) = \frac{a}{r^{12}} - \frac{b}{r^6}$, where $a, b > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2π		are constants and r is interpreted as the separation between the two stores. In terms of r and h for lithe lither separation between the two
local max local min local max min max max			find the absolute minimum $-\epsilon$ of V. Rewrite the potential in terms of

these new constants.

Math 1151Q Honors Calculus I Week #08	Throughout the rest of calculus, you will see that a lot of information
The Mean Value Theorem	about a function can be determined not just by its first derivative,
<u><i>Rolle's Theorem</i></u> is a theorem relating the values of a differentiable function on an interval at its boundary to its derivative on the interior of that interval.	concept include Lagrange's remainder theorem, which gives an approx- imation for a function that is differentiable many times in terms of its derivatives and polynomials (see Theorem 7), and the Taylor series.
Theorem 1. Let $a, b \in \mathbb{R}$ with $a < b$ and let $f : [a, b] \to \mathbb{R}$ be a function satisfying	L'Hospital's rules
	Although we were able to prove $\lim \frac{\sin(x)}{\cos(x)} = 1$ using trigonometric
<i>i. f</i> is continuous on [<i>a</i> , <i>b</i>],	inequalities, we could not apply the Algebraic Limit Theorem (ALT)
ii. f is differentiable on (a, b) , and	because $\lim_{x \to 0} \sin(x) = 0$ and $\lim_{x \to 0} x = 0$ and this ratio is undefined.
$iii. \ f(a) = f(b).$	Occasionally, one is confronted with limits where the ALT fails and also for which triangenetric an account is identified with a statement of the statement of
Then there exists a point $c \in (a, b)$ with $f'(c) = 0$. [Reference: Herb Gross: II 9 Bolle's Theorem and its Consequences]	be applicable. For instance, consider the limit $\lim \frac{\ln(x+1)}{x}$. By
[reference: here closes, his none's incorean and its consequences]	graphing the values of the function $(-1,\infty) \ge x \mapsto \frac{\ln(x+1)}{\ln(x+1)}$ it is
Consider the function $[0, \frac{1}{2}] \ni x \mapsto f(x) := \cos(x)\sqrt{x}$. Then f is continuous on its domain. Although f is not differentiable on	apparent that the limit of this exists as x approaches 0. It is also
its domain, it is differentiable on $(0, \frac{\pi}{2}]$ and its derivative is	apparent that the limit lim $\frac{\ln(x+1)}{\ln(x+1)}$ should be 0.
$f'(x) = \frac{\cos(x)}{2\sqrt{x}} - \sin(x)\sqrt{x}$ for all $x \in (0, \frac{\pi}{2}]$. Finally, $f(0) = f(\frac{\pi}{2}) = 0$.	$ \stackrel{\text{apparoid}}{\longrightarrow} x \xrightarrow{x \to \infty} x $
Hence, there exists a point $c \in (0, \frac{\pi}{2})$ such that $f'(c) = 0$. Such a	3
point is a solution to $2c = \frac{\cos(c)}{\sin(c)}$, but it is not obvious a solution to	2
this equation exists. Rolle's theorem guarantees its existence.	
What can go wrong if any of the hypotheses of Rolle's theorem fails?	
The following three examples are ones for which one of the assumptions fails but none of the others do	0 2 4 6 8 10
	The first case mentioned above is covered by L'Hospital's Rule: $0/0$
i. $[0,1] \ni x \mapsto f(x) := \begin{cases} 0 & \text{if } x = 0 \\ 1 - x & \text{otherwise} \end{cases}$. Notice that f satisfies	case.
ii. and iii. but not i. and $f'(x) = -1$ for all $x \in (0, 1)$.	Theorem 5. Let $a < b$ and let $c \in [a,b]$. Let $f,g : [a,b] \to \mathbb{R}$ be
ii $[-1, 1] \ni r \mapsto q(r) := r $ satisfies i and iii but not ii and	continuous functions and suppose that the restrictions of f and g to $[a, c) (c, b]$ are differentiable. Furthermore, suppose that $f(c) = a(c) = b(c) (c, b) = b(c) $
$g'(x) \in \{-1, 1\}$ for all $x \in [-1, 0] \cup (0, 1]$. $g'(0)$ is undefined.	$[a, c) \ominus (c, b]$ are appreciation. Furthermore, suppose that $f(c) = g(c) = 0$ and $g'(x) \neq 0$ for all $x \in [a, c) \cup (c, b]$. Then
iii. id : $[0,1] \to [0,1]$ satisfies i. and ii. but not iii. and id' = 1 everywhere.	$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \qquad \Rightarrow \qquad \lim_{x \to c} \frac{f(x)}{g(x)} = L.$
A slight generalization of Rolle's theorem is the <u>Mean Value Theorem</u> (MVT), which provides some information about a function based on its derivative	Our first example satisfies the assumptions of this theorem so that $\ln(x+1)$ $\ln(x+1)$ $\ln(x+1)$ $\ln(x+1)$ $\ln(x+1)$ $\ln(x+1)$
Theorem 2. Let $a, b \in \mathbb{R}$ with $a < b$ and let $f : [a, b] \to \mathbb{R}$ be a	$\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{1} = \frac{1}{\lim_{x \to 0} 1} = 1.$ As another example,
function satisfying	$\lim_{x \to \infty} \frac{\tan(x) - x}{x^3} = \lim_{x \to \infty} \frac{\frac{1}{\cos^2(x)} - 1}{2x^2} = \lim_{x \to \infty} \frac{\tan^2(x)}{2x^2} = \lim_{x \to \infty} \frac{2\tan(x)}{2x^2(x)} =$
<i>i.</i> f is continuous on [a, b] and	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ii. f is differentiable on (a, b) .	$\lim_{x \to 0} \left(\frac{3}{3} \cos^3(x) - \frac{1}{x} \right) = \frac{3}{3}$ by two applications of L'Hospital's rule.
Then there exists a point $c \in (a, b)$ with $f'(c) = \frac{f(b) - f(a)}{b - a}$.	Another instance where the ALT fails is for limits such as
Notice that Rolle's Theorem is a special case of the Mean Value Theorem obtained by setting $f(a) = f(b)$.	$\lim_{x \to 0} (x \ln(x)) \text{ and yet this limit can be shown to exist.}$
The MVT can be used to prove our first theorems about anti-	The second case mentioned above is covered by <u>L'Hospital's Rule</u> : ∞/∞ case.
derivatives.	Theorem 6. Let $a < b$ and let $c \in (a,b)$. Let $f, g: (a,c) \cup (c,b) \to \mathbb{R}$
Theorem 3. Let $a, b \in \mathbb{R}$ with $a < b$ and let $f : [a, b] \to \mathbb{R}$ be a	be differentiable functions. Furthermore, suppose that $g'(x) \neq 0$ for all
a constant function, i.e. there exists a $d \in \mathbb{R}$ such that $f(x) = d$ for	$x \in (a,c) \cup (c,b)$. If $\lim_{x \to c} f(x) = \pm \infty$ and $\lim_{x \to c} g(x) = \pm \infty$, then
$all \ x \in [a, b].$	$\lim_{x \to c} \frac{f'(x)}{a'(x)} = L \qquad \Rightarrow \qquad \lim_{x \to c} \frac{f(x)}{a(x)} = L.$
<i>Proof.</i> Let $x, y \in (a, b)$ with $x < y$. Then f restricted to $[x, y]$ satisfies	$\frac{1}{\ln(x)}$
the assumptions of the MVT. Hence, there exists a $c \in (x, y)$ such that	The above limit can be expressed as $\lim_{x\to 0} x \ln(x) = \lim_{x\to 0} \frac{\ln(x)}{1/x}$,
(y - x)f'(c) = f(y) - f(x), but the former equals 0 so $f(y) = f(x)$. Since x y were chosen arbitrarily we have $f(x) - f(y)$ for all x y $f(y) = f(y)$.	where the assumptions of this theorem now apply. The limit is
(a,b).	$\lim_{x \to 0} \left(x \ln(x) \right) = \lim_{x \to 0} \left(\frac{1/x}{-1/x^2} \right) = -\lim_{x \to 0} x = 0.$ One can also extend
	this theorem to compute limits as $x \to +\infty$ or $x \to -\infty$. For example,
Theorem 4. Let $a, b \in \mathbb{K}$ with $a < b$ and let $f, g : [a, b] \to \mathbb{R}$ be differentiable functions such that $f'(x) = a'(x)$ for all $x \in (a, b)$. Then	one could ask does $\ln(x)$ grow as $x^{1/n}$ for any $n \in \mathbb{N}$? Computing
$g = f + c$ for some $c \in \mathbb{R}$.	$\lim_{x \to \infty} \frac{m(x)}{r^{1/n}} = \lim_{x \to \infty} \frac{1/x}{(1/n)r^{(1/n)-1}} = \lim_{x \to \infty} \frac{n}{r^{1/n}} = 0$ shows this is false.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Lagrange's Remainder Theorem expresses that successive derivatives	Exercises
looks like at nearby points. If $f : \mathbb{R} \to \mathbb{R}$ is <i>n</i> -times differentiable, then	<b>Exercise 1.</b> Let $f : [a, b] \to \mathbb{R}$ be a differentiable function.
its <i>n</i> -th derivative is denoted by $f^{(n)}$ .	i. Show that if $f'(x) \neq 0$ for all $x \in [a, b]$ then f is one-to-one.
<b>Theorem 7.</b> Let $R > 0$ and let $f : (-R, R) \to \mathbb{R}$ be a function that is differentiable $N + 1$ times with $N \in \mathbb{N}$ . Set $a := \frac{f^{(n)}(0)}{2}$ for each $n \in \mathbb{R}$ .	not $A$ " instead of directly proving "A implies $B$ "—the two are
$\{0, 1, \dots, N+1\}. Also define (-R, R) \ni x \mapsto S_N(x) := \sum_{n=1}^{N} a_n x^n, and$	equivalent), i.e. prove that "if $f$ is not one-to-one, then there exists an $x \in [a, b]$ such that $f'(x) = 0$ ." Second hint: use Rolle's theorem
$E_N: (-R,R) \to \mathbb{R}$ by $E_N := f - S_N$ . Then, for any $x \in (-R,R) \setminus \{0\}$ ,	ii. Provide an example to show that the converse statement need not
there exists a $c \in (- x ,  x )$ such that $E_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}$ for that particular value of $x$ .	be true. Namely, give an example of a one-to-one function $f : [a,b] \to \mathbb{R}$ for which there exists a point $x \in [a,b]$ with $f'(x) = 0$ .
Given any differentiable function $f$ , the theorem says that the value of $f$ at some point $x \in (-R, R) \setminus \{0\}$ can be expressed in terms of two quantities. The first is a polynomial evaluated at $x$ all of whose data comes from the (successive) derivatives of $f$ at a single point, namely 0. This is "infinitesimal data." The second quantity is essentially	<b>Exercise 2.</b> Let $f : [a, c] \to \mathbb{R}$ be a differentiable function such that $f'(x) = m$ for all $x \in [a, c]$ for some constant $m \in \mathbb{R}$ . Prove that there exists a $b \in \mathbb{R}$ such that $f(x) = mx + b$ for all $x \in [a, c]$ . Hint: Define the function $g : [a, b] \to \mathbb{R}$ by $g(x) := mx$ . What is $(f - g)'$ equal to? What does this say about $f - g$ ?
what is left over. However, it, too, can be expressed as a polynomial of the next degree. This is no longer infinitesimal since the point $c$ could in general be larger than 0, but it is at least between $- x $ and $ x $ . The importance of $E_N$ is the actual expression for it in terms of $c \in (- x ,  x )$ , which illustrates that if the higher order derivatives of f are not unreasonably large, then the error term is very small.	<b>Exercise 3.</b> Let $L, R \in \mathbb{R}$ with $L < R$ and let $f : [L, R] \to \mathbb{R}$ be a differentiable function such that $f'(x) = 2a_2x + a_1$ for all $x \in [L, R]$ for some constants $a_2, a_1 \in \mathbb{R}$ . Prove that there exists an $a_0 \in \mathbb{R}$ such that $f(x) = a_2x^2 + a_1x + a_0$ for all $x \in [L, R]$ . Hint: look at the hint from the previous exercise and define a suitable function $g : [L, R] \to \mathbb{R}$ .
Consider the function $f: (-1, \infty) \to \mathbb{R}$ given by $(-1, \infty) \ni x \mapsto f(x) := \ln(x+1)$ . The first few approximations using only the polynomial terms associated to the derivatives of $f$ at 0 is given the graph on the left while the difference between these Taylor	<b>Exercise 4.</b> Let $L, R \in \mathbb{R}$ with $L < R$ and let $f : [L, R] \to \mathbb{R}$ be a differentiable function such that $f'(x) = \sum_{k=1}^{n} ka_k x^k$ for all $x \in [L, R]$ for some constants $a_1, a_2, \ldots, a_n \in \mathbb{R}$ . Prove that there exists an $a_0 \in \mathbb{R}$ such that $f(x) = \sum_{k=0}^{n} k!a_k x^k$ for all $x \in [L, R]$ . Hint: look
approximations from the partial sums $S_n$ and the actual function $f$ is	at the nint from the previous exercise and define a suitable function $g: [L, R] \to \mathbb{R}.$
drawn on the graph on the right. $ \begin{array}{c c}  & s_1 \\  & s_2 \\  & s_4 \\  & s_5 \\  & s_6 \\  & 0.2 \\  & & & & \\ \end{array} $	<b>Exercise 5.</b> Is the converse of L'Hospital's rule: $0/0$ case true? Namely, if $f, g : [a, b] \to \mathbb{R}$ are differentiable with $f(c) = g(c) = 0$ for some $c \in (a, b)$ , does $\lim_{x \to c} \frac{f(x)}{g(x)} = L$ imply $\lim_{x \to c} \frac{f'(x)}{g'(x)} = L$ ?
	<b>Exercise 6.</b> Compute the following limits.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i. $\lim_{x \to 0} \frac{\sin(x) - x}{x^3}$ . ii. $\lim_{x \to 0} \frac{\sin(x) - \left(x - \frac{1}{6}x^3\right)}{5}$ .
/// -0.6 † $///$ -0.6 † As the graph on the right indicates the error term approaches	$x \to 0$ $x^3$ $\sin(x) - (x - \frac{1}{x^3} + \frac{1}{x^5})$
zero as $n$ increases. We can try to provide a bound for this error	iii. $\lim_{x \to 0} \frac{\sin(x) - (x - \frac{6}{6}x + \frac{1}{120}x)}{x^7}.$
term using Lagrange's Remainder Theorem. Note that $f^{(N+1)}(x) = \frac{(-1)^N N!}{(x+1)^{N+1}}$ for $N \in \mathbb{N} \cup \{0\}$ and for all $x \in (-1,1)$ . Hence, fix $x \in (-1,1)$ . Then $\left f^{(N+1)}(c)\right  = \frac{N!}{(c+1)^{N+1}}$ for all $c \in (- x ,  x )$ so that	iv. $\lim_{x \to 0} \frac{\sin(x) - \sum_{n=1}^{N} \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!}}{x^{2N+1}} \text{ for any } N \in \mathbb{N}. \text{ Here } k! := 1 \cdot 2 \cdot 3 \cdots (k-2) \cdot (k-1) \cdot k \text{ denotes } k \text{ factorial.}$
$\left  \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1} \right  \leq \frac{N!}{(N+1)!} \left( \frac{ x }{c+1} \right)^{N+1} = \frac{1}{N+1} \left( \frac{ x }{c+1} \right)^{N+1}.$ If c were arbitrary, this could tend to infinity, so a blind estimate	v. $\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$ .
will not help (take for example $x = -0.9$ and $c = -0.8$ ). There- fore let us instead restrict attention to $x \in (-\frac{1}{2}, \frac{1}{2})$ . In this case	vi lim $\frac{\ln(1+x) - \left(x - \frac{x^2}{2}\right)}{1 + \frac{1}{2}}$
$\frac{ x }{c+1} < 1$ so that $\lim_{x \to a}  E_N(x)  = 0$ . We can also compute c ex-	$x \rightarrow 0$ $x^3$ $(x \rightarrow 0)$ $(x \rightarrow 0)$
plicitly. Setting $\frac{f^{(N+1)}(c)}{(N+1)!}x^{N+1} = \ln(x+1) - \sum_{n=1}^{N} \frac{(-1)^n + 1}{n}x^n$	vii. $\lim_{x \to 0} \frac{\ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)}{x^4}.$
gives $(c+1)^{N+1} = \frac{(-1)^N x^{N+1}}{(N+1)\left(\ln(x+1) - \sum_{n=1}^N \frac{(-1)^n + 1}{n} x^n\right)}$ so that	viii. $\lim_{x \to 0} \frac{\ln(1+x) - \sum_{n=1}^{N} \frac{(-1)^{n+1} x^n}{n}}{x^{N+1}}.$
$c = \frac{x}{\left[(N+1)\left(\ln(x+1) - \sum_{n=1}^{N} \frac{(-1)^n + 1}{n} x^n\right)\right]^{1/(N+1)}} - 1.$	ix. $\lim_{x \to 1} \left( (1-x) \ln \left(  \ln(x)  \right) \right).$
The successor of this theorem is the Taylor series expansion for an	x. $\lim_{x \to 0} \frac{\operatorname{III}( \operatorname{III}(x) )}{\ln( x )}.$
infinitely differentiable function. It states that under suitable	<b>Exercise 7.</b> Let $(-1,\infty) \ni x \mapsto f(x) := \ln(x+1)$ . Find c explicitly
approximated very well by a power series whose coefficients are the	and compute the function $E_1$ for $x = \frac{1}{3}$ . Do the same for $E_2$ .
higher derivatives of a function at a single point!	<b>Exercise 8.</b> Find c and $E_N$ for any $x \in \mathbb{R}$ for the function $\cos$ .

Math 1151Q Honors Calculus I Week #09	Even, odd, and periodic functions
Curve plotting	Define $\mathbb{R} \ni x \mapsto r(x) := -x \in \mathbb{R}$ be the function that reflects all
<ul> <li>Derivatives provide us with a lot of information about the shape of the graph of a function.</li> <li>Theorem 1. Let f: (a, b) → ℝ be a differentiable function.</li> <li>i. If f'(x) &gt; 0 for all x ∈ (a, b), then f is increasing, i.e. f(x) &lt; f(y) for x, y ∈ (a, b) with x &lt; y.</li> <li>ii. If f'(x) &lt; 0 for all x ∈ (a, b), then f is decreasing, i.e. f(x) &gt; f(y) for x, y ∈ (a, b) with x &lt; y.</li> </ul>	numbers across 0. A function $f : \mathbb{R} \to \mathbb{R}$ is <u>even</u> iff $f \circ r = f$ and <u>odd</u> iff $f \circ r = r \circ f$ . Given a real number $L \in \mathbb{R}$ , defined $\mathbb{R} \ni x \mapsto s_L(x) := x + L \in \mathbb{R}$ be the function that shifts all numbers by $L$ . A function $f : \mathbb{R} \to \mathbb{R}$ is <u>periodic</u> iff there exists a number $L \in \mathbb{R}$ such that $f \circ s_L = f$ . The smallest positive number $L$ such that $f \circ s_L = f$ is called the <u>period</u> of $f$ . Knowing when a function is even, odd, or periodic will be incredibly helpful when we discuss definite integrals.
The proof of this theorem is another application of the Mean Value Theorem (MVT).	Exercises
The second derivative of a function provides information about the curvature of the graph of that function. To state the theorem, it is useful to introduce the concept of convex and concave	<b>Exercise 1.</b> Prove the Shannon entropy for probability distributions on two events is convex by using the definition. Then prove this using calculus by taking the second derivative. Which proof is easier?
functions. A function is $f : (a,b) \to \mathbb{R}$ is <u>strictly convex</u> iff $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$ for all $x, y \in (a,b)$ and for all $\lambda \in (0,1)$ . A function is $f : (a,b) \to \mathbb{R}$ is <u>strictly concave</u> iff $f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$ for all $x, y \in (a,b)$ and for all $\lambda \in (0,1)$ . If the word "strictly" is dropped, then the strict inequalities become equalities.	<b>Exercise 2.</b> If $f : (a, b) \to \mathbb{R}$ is a twice differentiable function that is strictly convex on all of $(a, b)$ . Does this imply $f'(x) > 0$ for all $x \in (a, b)$ ? Explain. <b>Exercise 3.</b> Show that if a function $f : \mathbb{R} \to \mathbb{R}$ is odd, then $f(0) = 0$ . Check that the function defined by the formula $h(x) = \frac{1}{x}$ is odd. Do these two facts contradict each other? Explain
$1 \qquad 1 \qquad f(\lambda p + (1 - \lambda)q) \qquad f(q) \qquad f(p) + (1 - \lambda)f(q)$	<b>Exercise 4.</b> Show that if a function is both even and odd, then it is the 0 function.
$\begin{array}{c} f(p) \\ \lambda f(p) + (1-\lambda)f(q) \end{array} \qquad $	<b>Exercise 5.</b> Show that if a function is periodic and convex, then it is constant.
$0 \xrightarrow{p} \lambda p + (1-\lambda)q \xrightarrow{q} 1 \qquad 0 \xrightarrow{p} \lambda p + (1-\lambda)q \xrightarrow{q} 1$	<b>Exercise 6.</b> Show that if a function $f : \mathbb{R} \to \mathbb{R}$ is periodic and $\lim_{x \to \infty} f(x)$ exists, then $f$ is constant.
An example of a concave function is the Shannon entropy of a probability distribution. For two events, this takes the form $(0,1) \ni p \mapsto H(p) := -p \ln(p) - (1-p) \ln(1-p)$ . H can be extended continuously to $[0, 1]$ by defining $H(0) := 0$ and $H(1) := 0$	$x \to \infty$ Exercise 7. Show that if a function $f : \mathbb{R} \to \mathbb{R}$ is even and differentiable at 0, then $f'(0) = 0$ .
The second derivative of a function, if non-zero, describes the concav- ity or convexity of a function.	<b>Exercise 8.</b> Show that if a function is periodic and differentiable, then the derivative is also periodic. If the derivative of a function is periodic, is the function periodic? Explain.
<ul> <li>Theorem 2. Let f: (a,b) → R be a twice differentiable function.</li> <li>i. If f''(x) &gt; 0 for all x ∈ (a,b), then f is strictly convex.</li> <li>ii. If f''(x) &lt; 0 for all x ∈ (a,b), then f is strictly concave.</li> <li>Be aware, however, that a function can be concave or convex even if its second derivative is zero at a particular point. For example, consider the function R ∋ x ↦ p₄(x) := x⁴. The second derivative of</li> </ul>	<b>Exercise 9.</b> Find a degree 3 polynomial $\mathbb{R} \ni x \mapsto p(x) := a_0 + a_1x + a_2x^2 + a_3x^3$ whose values and derivatives match those of $f$ in the table after Theorem 3 in this handout. Are there multiple solutions to this problem? If so, find another polynomial $\mathbb{R} \ni x \mapsto q(x) := b_0 + b_1x + b_2x^2 + b_3x^3$ satisfying the conditions in that table. Otherwise, prove that your polynomial is the unique one satisfying these conditions.
this function at $x = 0$ is 0 and yet it is convex. Combining the previous results, we have the following incredibly useful result about first and second derivatives and optimization. It is called the <u>second derivative test</u> . <b>Theorem 3.</b> Let $f : (a, b) \to \mathbb{R}$ be a twice differentiable function such that $f''$ is continuous near $c \in (a, b)$ . <i>i.</i> If $f'(c) = 0$ and $f''(c) > 0$ , then f has a local minimum at c. <i>ii.</i> If $f'(c) = 0$ and $f''(c) < 0$ , then f has a local maximum at c.	<b>Exercise 10.</b> The <i>ideal gas law</i> is a relationship between the pressure $P$ , temperature $T$ (in Kelvin), the volume $V$ , and the number $n$ of moles of an ideal gas in some container. It is given by $PV = nRT$ , where $R$ is a constant, called the universal gas constant. At constant temperature $T$ , the pressure is inversely proportional to the volume $P = \frac{nRT}{V}$ . This function has no critical points on its domain $(0, \infty)$ . Furthermore, it is positive, convex, and has limits given by $\lim_{V\to 0} P(V) = \infty$ and $\lim_{V\to 0} P(V) = 0$ (verify this!). Not all gases can be adequately modeled
Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function whose second deriva-	$V \to \infty$ as an ideal gas. For this reason, other models are needed. One such
tive is continuous and suppose that one is given information about $f$ and its derivatives as in the following tables. A rough sketch of the graph of $f$ can be obtained from this information as in the graph on the right. $\begin{array}{c c} f(0) = 3 \\ \hline f(2) = -1 \end{array}$	model is the Van der Waals gas law. It is given by $\left(P + \frac{an^2}{V^2}\right)\left(V - bn\right) = nRT$ , where a and b are positive constants (which are computed empirically by data fitting and therefore depend on the gas). Solve this equation for P and compare these two functions. For example, discuss the critical points, concavity, etc. of the Van der Walls pressure in terms of the volume (assume that T is constant). Let $V_c$ be the volume, $P_c$ the pressure, and $T_c$ the temperature at which $P(V_c) = P_c$ , $P'(V_c) = 0$ , and $P''(V_c) = 0$ . Solve for a and b in terms of $V_c$ , $T_c$ , and $P_c$ . Rewrite P in terms of these other constants. Compare and contrast the graphs of P depending on the three possibilities: i. $T > T_c$ ii. $T = T_c$ and iii. $T < T_c$ .

Math 1151Q Honors Calculus I Week #10	Newton's method
Optimization	Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $x_0 \in \mathbb{R}$ . Newton's approximation
Math 1151Q Honors Calculus IWeek #10OptimizationAn optimization problemconsists of a function $f: \mathbb{R}^n \to \mathbb{R}$ for values $c_1, \dots, c_k \in \mathbb{R}$ , respectively. A solution of an optimization problemis a vector $\vec{x} := (x_1, \dots, x_n) \in \mathbb{R}^n$ for which $g_1(\vec{x}) = c_1, \dots, g_k(\vec{y}) = c_k$ , then $f(\vec{x}) (or f(\vec{x}) \leq f(\vec{y}))$ . The variables $x_1, \dots, x_n$ representsome physical parameters while the level sets $g_1^{-1}(\{\epsilon_1\}), \dots, g_k^{-1}(\{\epsilon_k\})$ describe constraints that these parameters must satisfy. An optimization solution is a set of parameters that maximizes (or minimizes) fthe domains of $f, g_1, \dots, g_k$ are replaced by subsets of $\mathbb{R}^n$ .If $k = n - 1$ and we are fortunate enough, we can use the constraintequations to solve for all of the variables in terms of a single one,say $x_1$ . Then $f(x_1, \dots, x_n) = f(x_1, x_2(x_1), \dots, x_n(x_1))$ . If f andall of the functions $x_2, \dots, x_n$ of $x_1$ are differentiable, maximizingor minimizing this function is obtained by finding the criticalpoints by taking the derivative and setting it equal to zero, i.e. $d_{eq}f(x_1, x_2(x_1), \dots, x_n(x_1)) = 0$ . One then analyzes the criticalpoints to determine if they are maxima or minima.If $k \neq n - 1$ or if it is not easy (or possible) to solve for all of theparameters in terms of a single parameter, then other techniques areneeded. This is covered in multivariable calculus under the topicCalculut <t< td=""><td>Newton's method Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let $x_0 \in \mathbb{R}$. Newton's approximation sequence is the sequence of real numbers $x_1, x_2, \ldots$ defined as follows. Let $L_0: \mathbb{R} \to \mathbb{R}$ be the linear approxima- for this line, i.e. $x_1$ satisfies $0 = L_0(x_1) = f'(x_0)x + (f(x_0) - f'(x_0)x_0)$. Let $x_1$ be the root of this line, i.e. $x_1$ satisfies $0 = L_0(x_1) = f'(x_0)x + (f(x_0) - f'(x_0)x)$. Solving for $x_1$ gives $x_1 = \frac{f'(x_0)x_0 - f'(x_0)}{f'(x_0)} = x_0 - \frac{f(x_0)}{f'(x_0)}$. Note that $f'(x_0)$ must not be zero in order approximation to f at $x_1$, i.e. $L_1(x) = f'(x_1)x_1 + (f(x_1) - f'(x_1)x_1)$. Solving for $x_2$ gives $x_2 = \frac{f'(x_1)x_1 - f(x_1)}{f'(x_1)}$. Solving for $x_2$ to be defined. We continue in this fashion, which requires the derivatives of $f$ evaluated at $x_n$ to always be nonzero since $x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$. Under suitable conditions, the sequence converges $\lim_{n\to\infty} x_n$ to a root of the function $f$. I am not aware of necessary and sufficient conditions for this to happen, but here are some thoughts. Let $[a, b] \subseteq \mathbb{R}$ be a closed interval on which $f$ has a single root and suppose $f'(x) \neq 0$ for all $x \in [a, b]$. Define $[a, b] \Rightarrow x \mapsto g(x) := x - \frac{f'(x)}{f'(x)}$. In order to have some control over the successive approximations to the root, it is sufficient to demand the image of $g$ to be in $[a, b]$ as well. In addition, notice that if $x_i$ is the root of $f$. Suppose that $f$ is twice differentiable with $f'(x) \neq 0$ for all $x \in [a, b]$ and suppose there exists a number $k \in [0, 1]$ such that $\left  \frac{f(x)f''(x)f}{f(x)} \right  \le k$ for all $x \in [a, b]$. Then for any $x_0 \in [a, b]$, the sequence $x_0, x_1 := g(x_0), x_2 := g(g(x_0)), \ldots$ converges to the unique $f'(x) \neq 0$ for all $x \in [a, b]$ and suppose there exists a number $k \in [0$</td></t<>	Newton's method Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let $x_0 \in \mathbb{R}$ . Newton's approximation sequence is the sequence of real numbers $x_1, x_2, \ldots$ defined as follows. Let $L_0: \mathbb{R} \to \mathbb{R}$ be the linear approxima- for this line, i.e. $x_1$ satisfies $0 = L_0(x_1) = f'(x_0)x + (f(x_0) - f'(x_0)x_0)$ . Let $x_1$ be the root of this line, i.e. $x_1$ satisfies $0 = L_0(x_1) = f'(x_0)x + (f(x_0) - f'(x_0)x)$ . Solving for $x_1$ gives $x_1 = \frac{f'(x_0)x_0 - f'(x_0)}{f'(x_0)} = x_0 - \frac{f(x_0)}{f'(x_0)}$ . Note that $f'(x_0)$ must not be zero in order approximation to f at $x_1$ , i.e. $L_1(x) = f'(x_1)x_1 + (f(x_1) - f'(x_1)x_1)$ . Solving for $x_2$ gives $x_2 = \frac{f'(x_1)x_1 - f(x_1)}{f'(x_1)}$ . Solving for $x_2$ gives $x_2 = \frac{f'(x_1)x_1 - f(x_1)}{f'(x_1)}$ . Solving for $x_2$ gives $x_2 = \frac{f'(x_1)x_1 - f(x_1)}{f'(x_1)}$ . Solving for $x_2$ gives $x_2 = \frac{f'(x_1)x_1 - f(x_1)}{f'(x_1)}$ . Solving for $x_2$ to be defined. We continue in this fashion, which requires the derivatives of $f$ evaluated at $x_n$ to always be nonzero since $x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$ . Under suitable conditions, the sequence converges $\lim_{n\to\infty} x_n$ to a root of the function $f$ . I am not aware of necessary and sufficient conditions for this to happen, but here are some thoughts. Let $[a, b] \subseteq \mathbb{R}$ be a closed interval on which $f$ has a single root and suppose $f'(x) \neq 0$ for all $x \in [a, b]$ . Define $[a, b] \Rightarrow x \mapsto g(x) := x - \frac{f'(x)}{f'(x)}$ . In order to have some control over the successive approximations to the root, it is sufficient to demand the image of $g$ to be in $[a, b]$ as well. In addition, notice that if $x_i$ is the root of $f$ . Suppose that $f$ is twice differentiable with $f'(x) \neq 0$ for all $x \in [a, b]$ and suppose there exists a number $k \in [0, 1]$ such that $\left  \frac{f(x)f''(x)f}{f(x)} \right  \le k$ for all $x \in [a, b]$ . Then for any $x_0 \in [a, b]$ , the sequence $x_0, x_1 := g(x_0), x_2 := g(g(x_0)), \ldots$ converges to the unique $f'(x) \neq 0$ for all $x \in [a, b]$ and suppose there exists a number $k \in [0$
Note that $L$ liters = $L$ cubic decimeters so that we do not have to include any factors of 10. We just have to express our answers in terms of decimeters. Therefore, $A(r, h(r)) = 2\pi r^2 + 2\pi r \left(\frac{L}{\pi r^2}\right) = 2\pi r^2 + \frac{2L}{r}$ and its derivative is $\frac{d}{dr}A(r, h(r)) = 4\pi r - \frac{2L}{r^2}$ . $r_o$ is a critical point of $A$ if and only if $4\pi r_o - \frac{2L}{r_o^2} = 0$ . Solving for $r_o$ gives $r_o = \left(\frac{L}{2\pi}\right)^{1/3}$ decimeters. $r_o$ is a minimum for many reasons: i. $A''(r_0, h(r_0)) > 0$ , ii. $\lim_{r\to 0} A(r, h(r)) = \infty$ and $\lim_{r\to\infty} A(r, h(r)) = \infty$ and continuity imply	II applied to the function $[a, b] \ni x \mapsto g(x) := x - \frac{f(x)}{f'(x)}$ since $g'(x) = 1 - \frac{(f'(x))^2 - f''(x)f(x)}{(f'(x))^2} = \frac{f''(x)f(x)}{(f'(x))^2}$ . The function $\mathbb{R} \ni x \mapsto \cos(x) - x$ has a single root. To find the root of $f$ up to a certain number of decimal places, make a guess such as $x_0 = 0.8$ and plug into the function $g(x) := x - \frac{f(x)}{f'(x)} = x + \frac{f(x)}{f'(x)} = $
A attains a minimum, iii. $A'(r_0 + \epsilon, h(r_0 + \epsilon)) > 0$ and $A'(r_0 - \epsilon, h(r_0 - \epsilon)) < 0$ for sufficiently small $\epsilon > 0$ .	$0.2 \qquad \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  1} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.4  0.6  0.8  0} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.8  0} \qquad \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.8  0} \ \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.8  0} \ \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.8  0} \ \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.8  0} \ \underbrace{\begin{array}{c} \cos(x) - x \\ \sin(x) + 1 \end{array}}_{0.2  0.8  0} \ \underbrace{\begin{array}{c} \cos$
Plugging $r_o$ into $h$ gives $h(r_o) = \frac{L}{\pi} \left(\frac{L}{2\pi}\right)^{-r_o} = \left(\frac{L}{4\pi}\right)^{r_o}$ decimeters.	which are given below.
Fix $a, b > 0$ . What is the area of the largest rectangle that can be inscribed in the ellipse given by the level set equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ? Let $(x, y)$ be one of the corners of the rectangle, which we may assume is on the ellipse and is in the first quadrant. Solving for $y$ as a function of $x$ gives $y = b\sqrt{1-\frac{x^2}{a^2}}$ . The area of the rect- angle is therefore $A = 4xy = 4bx\sqrt{1-\frac{x^2}{a^2}}$ . Maximizing this gives $0 = \frac{dA}{dx} = 4b\sqrt{1-\frac{x^2}{a^2}} - \frac{4bx^2}{a^2\sqrt{1-\frac{x^2}{a^2}}}$ . Multiplying by $\sqrt{1-\frac{x^2}{a^2}}$ and rearranging gives $1-\frac{x^2}{a^2} = \frac{x^2}{a^2}$ so $x = \frac{a}{\sqrt{2}}$ . Hence $y = b\sqrt{1-\frac{1}{2}} = \frac{b}{\sqrt{2}}$ so that the largest area is $A = xy = \frac{ab}{2}$ .	$\begin{array}{c} x_{0} = 0.8 \\ x_{1} \cong 0.73985330637 \\ x_{2} \cong 0.73908526340 \\ x_{3} \cong 0.73908513321 \\ x_{4} \cong 0.73908513321 \\ \hline \\ \begin{array}{c} 0.2 \\ -0.2 \\ -0.4 \\ -0.8 \\ -1 \end{array} \begin{array}{c} \text{This shows that even after both iterations,} \\ \text{the root of } f \text{ is } 0.73908513321 \\ \text{the root of } f \text{ is } 0.73908513321 \\ \text{the root of } f \text{ is } 0.73908513321 \\ \text{the root of because } g'(x) = \frac{\cos(x)(x - \cos(x))}{(1 + \sin(x))^{2}} \\ \text{provided that the initial starting point is chosen in } (0, 1]. \\ This shows that even after root in the root of the root of$

Antiderivatives	Exercises
Let $f : \mathbb{R} \to \mathbb{R}$ be a function. An <u>antiderivative</u> of $f$ is a differentiable function $F : \mathbb{R} \to \mathbb{R}$ such that $\overline{F'} = f$ . Note that if $F$ and $G$ are antiderivatives of $f$ , then by Theorem 4 from Week #08, $F - G$ is a constant. In most applications, this constant is important.	<b>Exercise 1.</b> Find a variety of five or six cans and measure them (in units of decimeters). Compute their area and volume. Then compute the optimal radius, height, and area for that given volume. Make a table of your results and discuss the significance of your findings.
If differentiation is viewed as a function whose domain is the set of differentiable functions, we can ask if there is an inverse. Let $S$ be the set of differentiable functions on $\mathbb{R}$ , let $\mathcal{T}$ be the set of all functions on $\mathbb{R}$ , and let $\mathcal{D} : S \to \mathcal{T}$ be the assignment sending any differentiable function $f$ to its derivative $\mathcal{D}(F) := F'$ . In this notation, the linearity of differentiation means $\mathcal{D}(F+G) = \mathcal{D}(F) + \mathcal{D}(G)$ and $\mathcal{D}(cF) = c\mathcal{D}(F)$ for all $F, G \in S$ and $c \in \mathbb{R}$ . Let $\mathcal{R}$ be the range of $\mathcal{D}$ . Then $\mathcal{D} : S \to \mathcal{R}$ is onto. Therefore, there exists a function $\mathcal{I} : \mathcal{R} \to S$ such that $\mathcal{D} \circ \mathcal{I} = \mathrm{id}_{\mathcal{R}}$ (every surjective function has a right inverse—take this for granted). Is $\mathcal{D}$ one-to-one? No, because if $F$ and $G$ satisfy $\mathcal{D}(F) = \mathcal{D}(G)$ , i.e. $F' = G'$ , then $F - G$ is a constant.	<b>Exercise 2.</b> Fix $r > 0$ . What is the area of the largest isosceles triangle that can be inscribed in a circle of radius $r$ ? Recall, an isosceles triangle is a triangle for which two sides have the same length. <b>Exercise 3.</b> Fix $r > 0$ . Consider the following problem: "What is the area of the largest triangle that can be inscribed in a circle of radius $r$ ?" Set up the problem to identify the function you are optimizing. Identify all of the variables that appear in the equation. Identify all of the constraints. Are there enough constraints for you to solve this problem using the techniques introduced here? Explain. <b>Exercise 4.</b> Fix $a, b > 0$ . What is the area of the largest isosceles
Therefore, for any function $f \in \mathcal{R}$ let $F$ be any antiderivative of $f$ . Then the level set $\mathcal{D}^{-1}(\{f\}) = \{F \in \mathcal{S} : F' = f\}$ is given by $\mathcal{D}^{-1}(\{f\}) = \{F + C : C \in \mathbb{R}, F' = f\}$ . Putting all of this together says that the set of all solutions $F$ to $D(F) = f$ is equal to a particular	triangle that can be inscribed in the ellipse given by the level set equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ? Exercise 5. Using Newton's method of approximation, find $x \in \mathbb{R}$
solution, some differentiable function $F$ such that $F' = f$ , plus any constant. [Reference: Herb Gross: II.10 Inverse Differentiation and Herb Gross: II.11 The "Definite" Indefinite Integral].	such that $e^{-x} = x$ to six decimal points. <b>Exercise 6.</b> Does Newton's method work for finding the root of $\mathbb{R} \ni x \mapsto \arctan(1+x) - x$ ? If yes, find it. Else, explain.
The power rule which says $p'_n = np_{n-1}$ , where $p_k(x) := x^k$ for all $k \in \{0, 1, 2, \ldots\}$ . Therefore, we can ask: "what is the set of all differentiable functions $F$ such that $F' = p_n$ ?" By thinking	<b>Exercise 7.</b> Apply Newton's method to find $x \in (0,1)$ such that $x^2 \tan(x) = x$ . <b>Exercise 8.</b> Let S be the set of differentiable functions let $\mathcal{D}$ be the
backwards, we know $\mathcal{D}(p_{n+1}) = (n+1)p_n$ so solving for $p_n$ gives $p_n = \frac{1}{n+1}\mathcal{D}(p_{n+1}) = \mathcal{D}\left(\frac{p_{n+1}}{n+1}\right)$ . Therefore, one particular solution is $\frac{p_{n+1}}{n+1}$ . Therefore, the general solution to $F' = p_n$ is the set $\left\{\frac{p_{n+1}}{n+1} + C : C \in \mathbb{R}\right\}$ . For example, if $n = 4$ , then we want a function	assignment sending a differentiable function to its derivative, let $\mathcal{R}$ be the range of $\mathcal{D}$ and let $\mathcal{I}$ be a choice of right inverse for $\mathcal{D}$ , i.e. $\mathcal{I}: \mathcal{R} \to \mathcal{S}$ satisfies $\mathcal{D} \circ \mathcal{I} = \mathrm{id}_{\mathcal{R}}$ (one does this by making a choice for the antiderivative for any function in $\mathcal{R}$ ).
F such that $F'(x) = x^4$ . Since $\frac{d}{dx}x^5 = 5x^4$ , we divide by 5 to obtain	i. Let $f, g \in \mathcal{R}$ . Prove $\mathcal{I}(f+g) - (\mathcal{I}(f) + \mathcal{I}(g))$ is some constant.
$\frac{d}{dx}\left(\frac{x^5}{5}\right) = x^4 \text{ but also } \frac{d}{dx}\left(\frac{x^5}{5} + C\right) = x^4 \text{ for any } C \in \mathbb{R}.$	ii. Let $f \in \mathcal{R}$ and $c \in \mathbb{R}$ . Prove $\mathcal{I}(cf) - c\mathcal{I}(f)$ is a constant.
Hey. Are you sleeping? Yes. What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What? What?	Hint: Apply $\mathcal{D}$ to both of these equations and use linearity. <b>Exercise 9.</b> Fix $a, m > 0$ . Find an equation relating $a$ and $m$ such that the graphs of $f(x) := e^{ax}$ and $g(x) := mx$ intersect in exactly one point. Can you use Newton's method to find the point $x$ at which these two functions intersect? If so, express $x$ as a function of $a$ . If not, do so when $a = 1$ . <b>Exercise 10.</b> If the force on a particle of mass $m$ is $F = k$ for some
sured by someone at the bottom of the cliff at time $t$ ? To find the height, we solve $\frac{dx}{dt} = -gt$ . One solution is $x(t) = -\frac{gt^2}{2}$ but if we	constant $k$ , and if the initial position is $x_0$ and the initial velocity is $v_0$ , find the displacement $x(t)$ as a function of time $t$ . Describe one situation where the force is constant in this way.
bilitation is $b(t) = \frac{1}{2}$ but if we plug in $t = 0$ , we get $x(0) = 0$ , which is not possible. Where is the rock at time $t = 0$ ? Obviously, it's at the top of the cliff. If we include $+C$ in our antiderivative, we get $x(t) = -\frac{gt^2}{2} + C$ . If h is the height of the cliff above the ground, then	<b>Exercise 11.</b> Find the general antiderivatives of the following functions. If $f_k$ denotes the function given, $F_k$ denotes its antiderivative. Then find the exact antiderivative if the value of the antiderivative is given at the point specified.
$x(0) = h$ . This forces $C = h$ in this case. Therefore, $x(t) = -\frac{gt^2}{2} + h$ .	i. $\mathbb{R} \ni x \mapsto f_1(x) :=  x $ . $F_1(2) = 5$ .
Imagine a force acting on a particle of mass $m$ subject to motion along a straight line. By Newton's force equation $F = ma$ , one can solve for $a = \frac{F}{m}$ . Since $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$ is the second derivative of the displace- ment, one can solve for the displacement as a function of time. For example, suppose $F(t) = k \cos(t)$ for all $t \in \mathbb{R}$ with $k$ some constant	n. $\mathbb{R} \ni x \mapsto f_2(x) := \sqrt{ x }$ . $F_2(1) = 1$ . iii. $\mathbb{R} \ni x \mapsto f_3(x) := \begin{cases} 0 & \text{if } x = 0 \\ x/ x  & \text{otherwise} \end{cases}$ . $F_3(0) = -1$ . iv. $\mathbb{R} \ni x \mapsto f_4(x) := x \cos(x^2)$ . $F_4(0) = 1$ . $\mathbb{R} \ni x \mapsto f_4(x) := x \cos(x^2)$ . $F_4(0) = 1$ .
and the initial position of the mass is $x_0$ and the initial velocity is $v_0$ . Antidifferentiating $\frac{k \cos(t)}{m}$ once gives $v(t) = \frac{k \sin(t)}{m} + c_1$ . At $t = 0$ , we have $v_0 = v(0) = c_1$ so $v(t) = \frac{k \sin(t)}{m} + v_0$ . Antidifferentiating again gives $x(t) = \frac{-k \cos(t)}{m} + v_0 t + c_2$ . At $t = 0$ , we have $x_0 = -\frac{k}{m} + c_2$ so $c_2 = x_0 + \frac{k}{m}$ . Therefore, $x(t) = x_0 + v_0 t + \frac{k}{m} (1 - \cos(t))$ for all $t \in \mathbb{R}$ .	For example, if $\mathbb{R} \ni x \mapsto f_5(x) := 0$ . $F_5(0) = 17$ . For example, if $\mathbb{R} \ni x \mapsto f(x) := x$ and $F(1) = 1$ then the general antiderivative is $F(x) = \frac{x^2}{2} + C$ with C an arbitrary constant. The specific solution is obtained from $1 = F(1) = \frac{1}{2} + C$ so $C = \frac{1}{2}$ so the specific antiderivative is $F(x) = \frac{x^2}{2} + \frac{1}{2}$ .

Math 1151Q Honors Calculus I Week #11	To compute the area under the graph of the exponen-
Area and distance	tial function from a to b, we apply a similar procedure: $a^{n-1}(x) = (a^{n-1})^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n-1}(x)^{n$
$\uparrow$ To compute the shaded area	$A_n(\exp; a, b) := \sum \left(\frac{L}{n}\right) \exp \left(a + \frac{kL}{n}\right) = \frac{Le^a}{n} \sum \left(e^{L/n}\right)^k =$
5 under the curve on the left,	$ \begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
4 we could break up the shaded	$\left[\frac{Le^a}{1-e^{L(n-1)/n}}\right]$ . To compute the limit lim $A_n(\exp; a, b)$ ,
trapezoid into two parts and	$n \ (1 - e^{L/n})$ $n \to \infty$
ing triangle and the rectangle.	we will first compute $\lim_{n \to \infty} n(1 - e^{-r})$ . For this, it is con-
2 Suppose the curve is described	variable so L'Hospital's rule can be applied. This gives
by the line $y(x) = mx + c$ with	$\frac{1}{1 - e^{Lx}} = \frac{1 - e^{Lx}}{1 - e^{Lx}}$
$b-a$ $m,b \ge 0$ . Suppose we wanted	$\lim_{n \to \infty} n(1 - e^{2t/n}) = \lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{1} = -L.$ There-
0 1 2 3 4 5 6 7 $r = a$ to $r = b$	fore, $\lim_{n \to \infty} A_n(\exp; a, b) = -e^a(1 - e^L) = -e^a(1 - e^{b-a}) = e^b - e^a$ .
The dimensions of the resulting triangle and rectangle are shown	Vicky drove a hovering vehicle from NYC to Boston along a straight
above. The area is therefore $(b-a)(ma+c) + \frac{1}{2}(b-a)(m(b-a)) =$	line and her velocity was tracked at all times and is shown on the
$\frac{1}{2}m(b^2-a^2)+c(b-a)$ . Interestingly, notice that this expression is	graph. At one point during the trip, she passed by a Wendy's. A few
the difference of the antiderivative of $f(x) = mx + c$ evaluated at $x = b$ and $x = a$ . Indeed, the antiderivative is $F(x) = \frac{1}{2}mx^2 + cx + C$	minutes after passing, she regretted not stopping. She slows down and reverses direction to pick up some nuggets and two junior bacon
(where C is an unknown constant) and the area equals $F(b) - F(a)$	cheeseburgers. Then she proceeds to go towards Boston. What is her
(notice that the constant $C$ gets cancelled). Also notice that the area	displacement from NYC during the following times?
under the curve is the area under the curve $\mathbb{R} \ni x \mapsto mx$ plus the	i. 2 hours
area under the curve $\mathbb{R} \ni x \mapsto c$ between $x = a$ and $x = b$ .	ii. 2 hours and 40 minutes
How do we compute areas under curves that are not of the form $u(x) = mx + c^2$ . For example, how can us compute the area under the	iii. 3 hours and 20 minutes
$g(x) = mx + c$ : For example, now can we compute the area under the curve $f(x) = x^2$ from $x = a$ to $x = b$ ? One method is to approximate	80 1
the area by shapes for which the area formula takes a particularly	
simple form. This occurs for rectangles. Using more rectangles will	6U
provide a more accurate formula. To do this calculation, we will	40 +
revisit computing the area under a straight line curve as well.	20
$16^{1}$	20
	The definite integral
	The previous example shows the importance of signs when computing
	areas under curves. If a function is negative over a given interval, then
To compute the area under the straight line curve $g(x) := x$ from	its area will be assigned a negative value. Let $f:[a,b] \to \mathbb{R}$ be a piece-
$x = a$ to $x = b$ , set $L := b - a$ and fix $n \in \mathbb{N}$ to be the num-	wise continuous function over an interval with at most finitely many
ber of rectangles we will use. If we demand the width to be the same for all of them, then they are $L/n$ in width. The better	points of discontinuity. Then $\lim_{n \to \infty} \sum_{k=1}^{n-1} \left( \frac{b-a}{a} f\left( a + \frac{k(b-a)}{a} \right) \right)$
left corners of the rectangles are given by $a + \frac{kL}{k}$ as k varies from	$n \to \infty \underset{k=0}{\overset{\sim}{\underset{\sim}}} \left( \begin{array}{cc} n \end{array} \right) \left( \begin{array}{cc} n \end{array} \right)$
0 to $n-1$ while the top left corners are given by the same for-	converges. Its value is called the <u>definite integral</u> of $f$ over $[a, b]$ and
mula. If we use $f(x) := x^2$ , then the top left corners are given by	is denoted by $\int_a^b f(x) dx$ . a and b are called the <i>limits of integration</i> .
$\left[\left(a+\frac{kL}{n}\right)^2\right]$ . The area of a given such rectangle is $\left(\frac{L}{n}\right)\left(a+\frac{kL}{n}\right)$ for g	piecewise continuous. In such cases, one can generalize the summation
and $\left(\frac{L}{n}\right)\left(a+\frac{kL}{n}\right)^2$ for f. The sum of the areas of the rectangles is	to allow for rectangles of arbitrary widths and evaluated at arbitrary
therefore $A(a; a, b) := \sum_{k=1}^{n-1} \left(\frac{L}{k}\right) \left(a + \frac{kL}{k}\right) = \frac{La}{2} \sum_{k=1}^{n-1} 1 + \frac{L^2}{2} \sum_{k=1}^{n-1} k = \frac{La}{2} \sum_{k=1}^{n-1} \frac{La}{k} = \frac{La}{2} \sum_{k=1}$	points. One then defines the integral by summing the areas for
$\prod_{k=0}^{n} \prod_{n=1}^{n} (g, u, v) := \sum_{k=0}^{n} \left(\frac{n}{n}\right) \left(\frac{u+n}{n}\right) = \frac{n}{n} \sum_{k=0}^{n-1} \prod_{k=0}^{n-1} \frac{n}{n^2} \sum_{k=0}^{n-1} \frac{n}{n^2} \sum$	successively finer <i>partitions</i> and taking the limit as the number of
$\left \frac{Lan}{Lan} + \frac{L^2n(n-1)}{Lan} - L\left(a + \frac{L}{L}\left(\frac{n-1}{Lan}\right)\right)\right $ Therefore $\lim A = -$	divisions tends towards infinity.
$n + 2n^2 = L \left( u + 2 \left( n \right) \right)$ . Therefore, $\min_{n \to \infty} n_n = 2$	f
$L\left(a+\frac{L}{2}\right)=\frac{b^2}{2}-\frac{a^2}{2}$ , which is what we expected. Now, for the $f(x)=$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$x^2$ curve, we have $A_n(f;a,b) := \sum \left(\frac{L}{n}\right) \left(a + \frac{kL}{n}\right) = \frac{La}{n} \sum 1 + \frac{kL}{n}$	
$\begin{bmatrix} k=0 & 10^{-1} & 10^{-1} & k=0 \\ 0 I^{2} a^{n-1} & I^{3} a^{n-1} & I^{-2} a^{n-2} & 0 I^{2} a^{n-1} & I^{3} (a-1) & (a-1) \end{bmatrix}$	$a x_1 x_2 x_3 x_4 b a x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 b$
$\left \frac{2L}{n^2}\sum k + \frac{L}{n^3}\sum k^2 = \frac{La^2n}{n} + \frac{2L^2an(n-1)}{2n^2} + \frac{L^2(n-1)n(2n-1)}{6n^3}\right $	A function $f : [a,b] \to \mathbb{R}$ for which $\int_a^b f(x) dx$ converges is called
$k=0$ $k=0$ $h$ $2h$ $0h^{2}$	<u>(<i>Riemann</i>) integrable</u> over $[a, b]$ . It is not easy to identify the class of functions that are integrable. [Before and Hard Classer, H 11 (The "Def
so $\lim_{n \to \infty} A_n(f; a, b) = La^2 + L^2a + \frac{L}{3} = \frac{b}{3} - \frac{a}{3}.$	inite" Indefinite Integral and Herb Gross: IV.1 The Definite Integral.
000	



Math 1151Q Honors Calculus I Weeks #12-#13	The substitution rule is the chain rule
The Fundamental Theorem of Calculus	<b>Theorem 3.</b> Let $g : [a,b] \to [c,d]$ be a differentiable function whose
Based on the computations from last week, we noticed a surprising	range is $[c,d]$ and let $f:[c,d] \to \mathbb{R}$ be an integrable function. Then
"coincidence." Namely, if $f:[a,b] \to \mathbb{R}$ is integrable and $F:[a,b] \to \mathbb{R}$	$\int_{0}^{0} f(g(x))g'(x)  dx = \int_{0}^{g(0)} f(y)  dy.$
is any antiderivative of f, then $\int_a^b f(x) dx = F(b) - F(a)$ . This is	$J_a$ $J_{g(a)}$
relates rates of change to areas/distances. It is so important it is	<i>Proof.</i> If f is continuous and F denotes an antiderivative of f, then $\int_{a}^{b} f(f(x)) f(x) dx = \int_{a}^{b} (F(x)) f(x) dx = \int$
called the Fundamental Theorem of Calculus. It actually has two	$\int_{a} f(g(x))g'(x)  dx = \int_{a} (F \circ g)'(x)  dx = (F \circ g)(b) - (F \circ g)(a) =$
forms which together show that differentiation and integration are in	$\int_{g(a)}^{S(a)} f(y)  dy$ showing this theorem is a consequence of the Chain Rule
some sense inverses of each other (though technically, they aren't—we	A notural question might be why even't the limits of integration on
will explain exactly what we mean soon). <b>Theorem 1</b> Let $f : [a, b] \to \mathbb{D}$ be continuous. Then the function	The right c and d namely why doesn't it say $\int_{a}^{d} f(u) du$ ? Consider the
<b>Theorem 1.</b> Let $f: [a, b] \to \mathbb{R}$ be continuous. Then the function $[a, b] \to x \mapsto a(x) := \int_{-\infty}^{x} f(x) dx$ is continuous and is differentiable	following example illustrating the generic situation.
when restricted to $(a,b)$ . In fact, its derivative is given by $g'(x) = f(x)$	
for all $x \in (a, b)$ .	
<i>Proof.</i> The proof of this is a direct consequence of the definition of	g(b)
the derivative and the properties of the integral. We will not prove this here rigorously but instead will give the idea. To prove continuity	g(a) +
of a st c one must show $\lim_{x \to 0^+} \int_{-\infty}^{x} f(x') dx' = \int_{-\infty}^{0} f(x') dx'$ First	
or g at c, one must show $\lim_{x\to c} \int_a^b f(x) dx = \int_a^b f(x) dx$ . First,	
consider the limit from the right. Proving continuity from the right is $\int_{c}^{c+\delta} \int_{c}^{c}$	Notice that the integration actually proceeds in several steps de-
equivalent to proving $\lim_{\delta \to 0} \int_{a} f(x') dx' - \int_{a} f(x') dx' = 0$ , but the	pending on how $g$ increases and decreases over its domain $[a, b]$ :
left equals $\lim_{x \to 0} \int_{-\infty}^{c+\delta} f(x') dx'$ by properties of the integral. Since $f$	$\int_{g(a)}^{d} + \int_{d}^{c} + \int_{c}^{g(b)}$ . The middle integral backtracks. To see how all these
left equals $\lim_{\delta \to 0} \int_c f(x) dx$ by properties of the integral. Since $f$	integrals simplify, break each of them into parts: $\int_{q(a)}^{d} + \int_{d}^{c} + \int_{c}^{g(b)} =$
is continuous, its value in the small range $[c, c + \delta]$ is approximately	$\int_{a(a)}^{g(b)} + \int_{a(b)}^{d} + \int_{d}^{g(b)} + \int_{a(b)}^{g(a)} + \int_{a(a)}^{c} + \int_{a(a)}^{g(a)} + \int_{a(a)}^{g(b)} + \int_{a(a)}^{g(b)} = \int_{a(a)}^{g(b)}$ . In other
$\int f\left(c + \frac{\delta}{2}\right) \cdot \text{Hence, } \lim_{\delta \to 0} \int_{c} f(x')  dx' \approx \lim_{\delta \to 0} \int_{c} f\left(c + \frac{\delta}{2}\right)  dx' =$	words, all of the other intervals cancel and we are left with $[g(a), g(b)]$ .
$\lim_{t \to 0} f\left(c + \frac{\delta}{2}\right) \int_{0}^{c+\delta} dx' = \lim_{t \to 0} f\left(c + \frac{\delta}{2}\right) \delta = 0. \text{ A similar argument}$	Let us work through several examples. Even $\int_{a}^{b} w \sqrt{1 + w^2} dw$ set $w(w) = 1 + w^2 + w + f(w)$ . For $w(w) = 0$ .
applies to the limit on the left. To prove differentiability of q at c,	1. For $\int_a^b x\sqrt{1+x^2}  dx$ , set $g(x) = 1+x^2$ and $f(y) = \sqrt{y}$ so $g(x) = 2x$
note that the difference quotient numerator is given by $g(c + \epsilon)$ –	and $\int_a x\sqrt{1+x^2}  dx = \frac{1}{2} \int_a f(g(x))g'(x)  dx = \frac{1}{2} \int_{1+a^2} \sqrt{y}  dy =$
$g(c) = \int_a^{c+\epsilon} f(x')  dx' - \int_a^c f(x')  dx' = \int_c^{c+\epsilon} f(x')  dx'.$ For a similar	$\frac{1}{3}y^{2/3}\Big _{1+-2}^{1+0} = \frac{1}{3}\left((1+a^2)^{3/2} - (1+b^2)^{3/2}\right).$
reason to the above, this integral is approximately given by $f(c + \frac{\epsilon}{2}) \epsilon$ .	$ = \sum_{i=1}^{n+a} \left( \frac{b}{a} \left( \frac{b}{a} \left( \frac{b}{a} \right) \right)^{5} \cos(a) da \text{ set } a(a) = \frac{b}{a} \sin(a) \cos(a) da f(a) = \frac{b}{a} \sin(a) \sin(a) \sin(a) \sin(a) da f(a) = \frac{b}{a} \sin(a) \sin(a) \sin(a) \sin(a) \sin(a) \sin(a) \sin(a) \sin(a)$
Hence, the difference quotient looks like $g'(c) = \lim_{\epsilon \to 0} \frac{g(c+\epsilon) - g(c)}{\epsilon} \approx$	In For $\int_a (\sin(x)) \cos(x) dx$ , set $g(x) = \sin(x)$ and $f(y) = y$ so $g'(x) = \cos(x) \cosh\left(\frac{b}{2}\cos(x)\left(\sin(x)\right)^5 dx = \int_a^b f(g(x)) g'(x) dx = \int_a^b f(g(x)) g'(x) dx = \int_a^b f(g(x)) g'(x) dx$
$\lim_{t \to \infty} f\left(c + \frac{\epsilon}{2}\right) \epsilon = f(c)$	$g(x) = \cos(x)$ and $\int_a \cos(x) (\sin(x)) dx = \int_a f(g(x))g(x) dx = $ $\sin(b) = 1 + e^{\sin(b)} + 1 + (x) + 6 + (x) + 6$
$\lim_{\epsilon \to 0} \frac{1}{\epsilon} = f(c).$	$\int_{\sin(a)}^{\sin(a)} y^{3} dy = \frac{1}{6} y^{6} \Big _{\sin(a)} = \frac{1}{6} \left( \left( \sin(b) \right)^{2} - \left( \sin(a) \right)^{2} \right).$
<b>Theorem 2.</b> Let $f : [a, b] \to \mathbb{R}$ be and integrable function and let $F :$	iii. To compute $\int_{a}^{b} \cos^{2}(x) dx$ , first note that $\cos(2x) = \cos^{2}(x) - \cos^{2}(x)$
$[a,b] \to \mathbb{R}$ be any antiderivative of $f$ , then $\int_a^b f(x)  dx = F(b) - F(a)$ .	$\sin^2(x) = \cos^2(x) - (1 - \cos^2(x)) = 2\cos^2(x) - 1 \text{ so } \cos^2(x) =$
<i>Proof.</i> Set $[a,b] \ni x \mapsto g(x) := \int_a^x f(x)  dx$ and apply the previous	$\frac{1}{2}(\cos(2x)+1)$ . Hence, $\int_a^b \cos^2(x) dx = \int_a^b \frac{1}{2}(\cos(2x)+1) dx =$
	$\frac{1}{2}\int_{a}^{b}\cos(2x) dx + \frac{1}{2}\int_{a}^{b}dx = \frac{1}{2}\int_{a}^{b}\cos(2x) dx + \frac{1}{2}(b-a)$ . To compute
There are so many consequences of this theorem. The most immediate one is the ability to compute Riemann sums that were too difficult to	the first integral, set $g(x) = 2x$ and $f(y) = \cos(y)$ . Then $g'(x) = 2$
compute explicitly. Here are several examples.	and $\frac{1}{2} \int_{a}^{b} \cos(2x) dx = \frac{1}{4} \int_{a}^{b} f(g(x))g'(x) dx = \frac{1}{4} \int_{2a}^{2a} \cos(y) dy = \frac{1}{2} \int_{a}^{b} \cos(2x) dx = \frac{1}{4} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \cos(2x) dx = \frac{1}{4} \int_{a}^{b} \int_{a}^{$
i. $\int_{a}^{b} \frac{1}{x} dx = \ln(b) - \ln(a) = \ln\left(\frac{b}{a}\right)$	$\frac{1}{4}(\sin(2b) - \sin(2a))$ . Putting these together gives $\int_a^{\infty} \cos^2(x) dx = \frac{1}{4}(\sin(2b) - \sin(2a)) + \frac{1}{2}(b-a)$ .
ii. $\int_{a}^{b} \sqrt{x}  dx = \frac{2}{3} x^{3/2} \Big _{b}^{a} = \frac{2}{3} \left( b^{3/2} - a^{3/2} \right)$	iv. For $a, b \in (0, \infty)$ with $a < b$ , to evaluate $\int_a^b \frac{(\ln(x))^4}{x} dx =$ , set
iii. $\int_{a}^{b} \sin(x)  dx = -\cos(x) \Big _{b}^{a} = \cos(a) - \cos(b)$	$g(x) = \ln(x)$ and $f(y) = y^4$ so $g'(x) = \frac{1}{x}$ and $\int_a^b \frac{(\ln(x))^4}{x} dx = \int_a^b f(x) dx = \int_a^b \frac{(\ln(x))^4}{x} dx = \frac{1}{x} (\ln(x))^5$
iv. $\int_{a}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} \Big _{a}^{a} = \frac{1}{n+1} (b^{n+1} - a^{n+1})$	$\int_{a} \int (g(x))g(x)  dx = \int_{\ln(a)} g  dy = \frac{1}{5} \left( (\ln(b))^{2} - (\ln(a))^{2} \right).$ v For $\int_{a}^{b} \sin(x)e^{\cos(x)}  dx$ set $a(x) = \cos(x)$ and $f(y) = e^{y} \sin a'(x) = \frac{1}{5} \int_{a}^{b} \sin(x)e^{\cos(x)}  dx$
In the above, we have used the notation $F(x)\Big _{b}^{a} := F(b) - F(a).$	$-\sin(x). \text{ Then } \int_{a}^{b} \sin(x) e^{\cos(x)} dx = -\int_{a}^{b} f(g(x))g'(x) dx$
Another consequence is the following. Suppose $a, b : \mathbb{R} \to \mathbb{R}$	$-\int_{\cos(a)}^{\cos(b)} e^y  dy = e^{\cos(a)} - e^{\cos(b)}.$
are differentiable and $f : \mathbb{R} \to \mathbb{R}$ is integrable and con-	The notation $\int f(x) dx$ will be used (without limits of integration)
tinuous (we are used to writing $a$ and $b$ as constants, but	to denote an antiderivative of $f$ . In particular, it must include an intermediate summarized $F$ and
they are now functions). Let $r$ denote an antiderivative of $f$ . Then $\frac{d}{dt} \int_{-\infty}^{b(x)} f(y) dy = \frac{d}{dt} \int_{-\infty}^{b(x)} f(y) dy = \frac{d}{dt} \int_{-\infty}^{b(x)} f(y) dy$	integration constant. For example, $\int x  dx = \frac{1}{2}x^2 + C$ , where C is a constant. Furthermore, we often us the variable u to denote a For
$\begin{bmatrix} or & j & \text{inch} & \frac{1}{dx} J_a(x) J(y) & uy & -\frac{1}{dx} (F(0(x)) - F(u(x))) \\ F'(b(x))b'(x) & -F'(a(x))a'(x) & = f(b(x)) - f(a(x)) & \text{This is a} \end{bmatrix}$	example in $\int x\sqrt{1+x^2} dx$ , set $u = 1+x^2$ so that $du = 2x$ . Then
sort of generalized fundamental theorem of calculus, but it is really a	$\int x\sqrt{1+x^2}  dx = \frac{1}{2} \int \sqrt{u}  du = \frac{1}{3}u^{3/2} + C = \frac{1}{3}(1+x^2)^{3/2} + C.$ This
consequence of it and the chain rule.	facilitates computations. This is sometime called $\underline{u}$ -substitution.

The <i>u</i> -substitution rule can be used to simplify other integrals that	Exercises
cannot be immediately computed using the rule.	<b>Exercise 1.</b> Compute the following integrals.
i. For example, to compute $\int (1 + x^2)^{1/2} x^3 dx$ , set $u = 1 + x^2$ so that $du = 2xdx$ and $x^2 = u - 1$ . Then $\int (1 + x^2)^{1/2} x^3 dx$ .	i. $\int_a^b \frac{dx}{1+2x+x^2}.$
$ \begin{array}{c} x^2 \int^{1/2} x^3  dx = \int (1+x^2) \int^{1/2} x^4 x  dx = \frac{1}{2} \int u^{1/2} (u-1)^2  du = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2})  du = \frac{1}{2} \left(\frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right) + C = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2})  du = \frac{1}{2} \left(\frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right) + C = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2})  du = \frac{1}{2} \left(\frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right) + C = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2})  du = \frac{1}{2} \left(\frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right) + C = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{5/2})  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac{2}{7} u^{5/2} + \frac{2}{5} u^{5/2} + \frac{2}{5} u^{5/2}\right)  du = \frac{1}{2} \left(\frac$	ii. For $a, b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $a < b$ , evaluate $\int_a^b \frac{\exp(\tan(x))}{\cos^2(x)} dx$ .
$\frac{1}{7}(1+x^2)^{7/2} - \frac{2}{5}(1+x^2)^{5/2} + \frac{1}{3}(1+x^2)^{3/2} + C.$	iii. For $a, b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $a < b$ , evaluate $\int_a^b \frac{2x \exp(\tan(x^2))}{\cos^2(x^2)} dx$ .
ii. As another example, consider $\int \frac{x^2 dx}{(3-5x)^2}$ . Setting $u = 3 - 5x$	iv. $\int_a^b \sin^2(x) dx$ .
we have $x = \frac{3-u}{5}$ together with $du = -5dx$ and $dx = \frac{1}{5} \int \frac{1}{2} dx$	v. $\int_a^b x e^{3x^2} dx.$
$-\frac{1}{5}du$ . The integral then becomes $\int \frac{x}{(3-5x)^2} = -\frac{1}{5}\int (\frac{3-u}{x})^2 \frac{u}{u^2} =$	vi. $\int_{a}^{b} \frac{dx}{5+4x+x^{2}}$ .
$-\frac{1}{125}\int \left(\frac{3}{u^2} - \frac{3}{u} + 1\right) du = -\frac{1}{125}\left(-\frac{3}{u} - 6\ln(u) + u\right) + C =$	<b>Exercise 2.</b> Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and integrable. Define
$-\frac{1}{125}\left(-\frac{9}{3-5x}-6\ln(3-5x)+3-5x\right)+C.$	$g(x) := \int_0^x f(y)  dy$ . Describe the critical points of g. Identify when the
Warning: When applying <i>u</i> -substitution, you might apply it differ-	critical points are local minima and maxima.
ently than your neighbor and your answers may differ. However, your	<b>Exercise 3.</b> Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous and integrable function
Sometimes, clever tricks make computing integrals accient Also, being	and let $c \in \mathbb{R}$ . For each $n \in \mathbb{N}$ , let $\delta_n : \mathbb{R} \to \mathbb{R}$ be the function
able to identify which substitutions will work takes a lot of practice.	defined by $\delta_n(x) := \begin{cases} 2n & \text{if } -\frac{1}{n} \leq x \leq \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$ . Draw the graph of $\delta_n$ fo
i Let $f : [0,\pi] \to \mathbb{R}$ be continuous. First note that $\int_{0}^{\pi} rf(\sin(x)) dx - \frac{\pi}{2} \int_{0}^{\pi} f(\sin(x)) dx$ . To see this set $y = \pi - x$ .	$n = 1, 2, 3$ and 3. Compute $\int_{-\infty}^{\infty} \delta_n(x) dx$ . Prove $\int_{-\infty}^{\infty} f(x) \delta_n(x) dx =$
Then $du = -dx$ and $x = \pi - u$ so that $\int_0^{\pi} x f(\sin(x)) dx = x$	$2n \int_{-1/n}^{1/n} f(x) dx$ . What is $\lim_{x \to \infty} \int_{-1/n}^{\infty} f(x) \delta_n(x) dx$ ? The sequence of
$\int_{\pi}^{0} (\pi - u) f(\sin(\pi - u))(-du) = \int_{\pi}^{0} (\pi - u) f(\sin(u))(-du) =$	functions $\delta_1, \delta_2, \delta_3, \ldots$ is a sequence of functions converging to the
$\pi \int_0^{\pi} f(\sin(u))  du - \int_0^{\pi} u f(\sin(u))  du$ . Notice that the right in-	Dirac delta "function" (technically, the Dirac delta distribution).
tegral is the same as what we initially started with since u is just a dummy variable. Solving for this gives $\int_{-\pi}^{\pi} rf(\sin(x)) dx =$	<b>Exercise 4.</b> The work done on a gas during a process that change
Just a duminy variable. Solving for this gives $\int_0^{\pi} x f(\sin(x)) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin(x)) dx$ .	the volume but keeps the gas at constant temperature is given by $V_{0}^{V_{0}}$
ii This identity can be used to solve some complicated integrals such	$W = -\int_{V_1}^{V_2} P(V) dV$ , where $P(V)$ is the pressure of the gas assumed to be a function of the volume. Compute the work under such a process
as $\int_0^{\pi} \frac{x \sin(x)}{1 + \cos^2(x)} dx$ . Since $1 + \cos^2 = 2 + \sin^2$ , this integral becomes	when the volume of the gas changes from $V_1$ to $V_2$ under the following
$\int_0^{\pi} \frac{x \sin(x)}{2 - \sin^2(x)}  dx.$ If we define $f(y) := \frac{y}{2 - x^2}$ , this integral is of the	assumptions on the gas.
form $\int_0^{\pi} xf(\sin(x)) dx$ . By the preceding identity, our integral be-	i. For the ideal gas model, the pressure is given by $P(V) = \frac{nRI}{V}$
comes $\int_0^{\pi} \frac{x \sin(x)}{1 + \cos^2(x)} dx = \frac{\pi}{2} \int_0^{\pi} f(\sin(x)) dx = \frac{\pi}{2} \int_0^{\pi} \frac{\sin(x)}{1 + \cos^2(x)} dx.$	constant, and T is the temperature (in Kelvin). For reference
To proceed, set $u = \cos(x)$ . Then $du = -\sin(x)dx$ and the in-	(not needed to solve this part of this problem), $R = 8.3144598$
tegral becomes $\int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} dx = -\frac{\pi}{2} \int_1^{-1} \frac{du}{1 + u^2} = \frac{\pi}{2} \left( \arctan(1) - \frac{1}{2} + \frac{1}{2} \right) dx$	Joules per mole per Kelvin $(\text{Jmol}^{-1}\text{K}^{-1})$ .
$\arctan(-1) = \frac{\pi}{2} \left( \frac{\pi}{4} + \frac{\pi}{4} \right) = \frac{\pi^2}{4}.$	ii. For the Van der Walls gas model, the pressure is related to the
Separation of variables	volume V by $\left(P + \frac{an}{V^2}\right)(V - bn) = nRT$ , where a and b are
A substance decays at a rate proportional to itself. If the initial	positive constants and depend on the gas one is working with (the constants are obtained empirically). In Week $\pm 0.00$ you were asked
amount of the substance is A, find an equation describing the amount of the substance as a function of time. To solve this, let x denote the	to solve this equation for P. The result is $P(V) = \frac{nRT}{V_{L_{n}}} - \frac{an^2}{V_{L_{n}}}$
substance and let t denote time. The initial sentence says $\frac{dx}{dt} = -kx(t)$	iii. For the Redlich-Kwong gas model, the pressure is related to the
with k some positive constant (the reaction constant). To find $x(t)$ , a	volume V by $P = \frac{nRT}{r} - \frac{An^2}{r}$ where A and B are pos

useful trick is to treat dx and dt as separate measures and move all

x's to one side and t's to the other. This gives  $\frac{dx}{x} = -kdt$ . Integrating

both sides gives  $\int \frac{dx}{x} = -k \int dt$ . Performing these antiderivatives

gives  $\ln(x) = -kt + c$ , where c is some integration constant. Solving for x gives  $x(t) = e^{-kt+c} = Ce^{-kt}$ , where  $C = e^c$  is just another way

of rewriting the constant of integration. Since x(t = 0) = A, this lets us solve for C. In fact, A = C so  $x(t) = Ae^{-kt}$ . Notice that this

solution is reasonable since the amount of the substance is decreasing

as a function of time. Furthermore, initially, the decay is quick and then it slows down as the amount of the substance decreases.

Recall from Week #07 the differential equation describing the von Bertalanffy growth equation given by  $\frac{dL}{dt} = \frac{a}{3} - \frac{b}{3}L = k(L_{\infty} - L),$ 

where  $k := \frac{b}{3}$  and  $L_{\infty} := \frac{a}{b}$ . By separating variables, this becomes  $\frac{dL}{L-L_{\infty}} = -kdt$ . Integrating gives  $\ln(L - L_{\infty}) = -kt + c$ .

Exponentiating gives  $L(t) - L_{\infty} = Ce^{-kt}$ . If the initial size of the

organism is  $L_0$ , this gives the constraint  $L_0 - L_{\infty} = C$ . Hence  $L(t) = (L_0 - L_{\infty})e^{-kt} + L_{\infty} = L_0e^{-kt} + L_{\infty}(1 - e^{-kt})$ . The solution

is consistent with what we would expect. The organism grows rather

quickly initially and then continues to grow until it reaches its largest

size asymptotically.

iii. For the Redlich-Kwong gas model, the pressure is related to the volume V by  $P = \frac{nRT}{V-Bn} - \frac{An^2}{V(V+Bn)\sqrt{T}}$ , where A and B are positive constants and depend on the gas one is working with (the constants are obtained empirically).

**Exercise 5.** Solve the differential equation  $\frac{dx}{dt} = x^2$  by separation of variables with the initial condition x(t=0) = -1.

**Exercise 6.** Solve the differential equation  $\frac{dx}{dt} = -tx$  by separation of variables with the initial condition  $x(t=0) = \sqrt{\frac{2}{\pi}}$ . This solution is a type of Gaussian distribution.

**Exercise 7.** A Schwarzschild black hole emits Hawking radiation at a rate proportional to the inverse square of its mass  $\frac{dm}{dt} = -\frac{\alpha}{m^2}$ , where  $\alpha = \frac{\hbar c^4}{15360\pi G^2}$  is a constant ( $\hbar$  is Planck's reduced constant, c is the speed of light, and G is Newton's gravitational constant) and m is the mass of the black hole. As a result, the mass of the black hole decreases as a function of time. If the initial mass of the black hole is  $m_0$ , find the equation describing its mass m(t) as a function of time. When has all of the mass of the black hole whose initial mass is the solar mass, what is the evaporation time? Compare this to the current age of the universe. What is the significance of this result?

