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These are my personal notes. This is not a substitute for Abbott’s book. You will not be

responsible for any Remarks in these notes. However, everything else, including what is in

Abbott’s book (even if it’s not here), is fair game for homework, quizzes, and exams. At the end

of each lecture, I provide a list of homework problems that can be done after that lecture. I also

provide additional exercises which I believe are good to know. You should also browse other books

and do other problems as well to get better at writing proofs and understanding the material.
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1 August 30

Real analysis is the study of continuous and smooth functions of a real variable. Historically,

analysis was developed assuming several properties of the real number system. We will do this to

some degree, but will eventually construct the real numbers from the rational numbers. We will

begin with sets as one of the structures taken for granted.1 Sets are collections of elements and

are denoted by {x, y, z}, where x, y, and z denote the elements. Here are several examples.

(a) The people in this room.

(b) Positive even integers 2N := {2, 4, 6, 8, . . . }.

(c) All natural numbers N := {1, 2, 3, 4, . . . }.

(d) All animals on this planet.

There is also a set consisting of no elements. This is called the empty set and is denoted by ∅.
Note that the order that the elements are listed in does not matter nor are there any repeats. One

common axiom of mathematics is that the empty set is a set, i.e. the empty set exists. Another

axiom is that there exists a set with a single element.

Definition 1.1. Given two sets A and B, the union of A and B is

A ∪B := {x : x ∈ A or x ∈ B}. (1.2)

The right-hand-side (RHS) is read as the set of all elements x such that x is an element of A or x

is an element of B.

Example 1.3. Let A = {cat, dog, apple} and B = {apple, telephone}. Then

A ∪B = {cat, dog, apple, telephone}. (1.4)

Definition 1.5. The intersection of A and B is

A ∩B := {x : x ∈ A and x ∈ B}. (1.6)

The RHS is read as the set of all elements x such that x is an element of A and x is an element

of B.

1We reach some point where we must take some concepts and definitions for granted to get anywhere. Thinking

of sets as just collections naively can lead to some trouble. An excellent exposition of this is given in Chapter 2

of [8]. Here’s a brief summary of some points. One can either specify sets by explicitly listing all the elements or

by some characteristic property. The former works for finite sets (perhaps of small number) while the latter can be

used for infinite sets as well (such as the natural numbers, as we will see). However, the latter method can lead to

some peculiar contradictions if one does not properly define this characteristic. Suppose, say, you consider the set

of all trees on the planet. Do you mean all trees that existed, currently exist, or existed during some time period?

What do we mean by tree? An even more serious issue occurs in the following example. The barber in a village

was asked to shave everyone (the supposed set of people) who does not shave themselves. Should the barber then

shave himself (i.e. be included in this supposed set)?
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Example 1.7. LetA = {2, 4, 6, 8, . . . } be the set of positive even numbers andB = {3, 6, 9, 12, . . . }
be the set of positive multiples of 3. Then

A ∩B = {6, 12, 18, . . . } (1.8)

is the set of positive multiples of 6.

Definition 1.9. Let A be a set. A subset of A is a set B such that every element of B is an

element of A. When B is a subset of A, we write

B ⊆ A. (1.10)

Definition 1.11. Let A be a set. The power set of A is the collection of all subsets of A

P(A) := {B : B ⊆ A}. (1.12)

In particular, ∅, A ∈ P(A). One common axiom of mathematics is that the power set of a set

is always a set.

Exercise 1.13. Prove the following. Let A be a set consisting of n elements where n ∈ N. Then

P(A) has 2n elements. Hint: every subset B ⊆ A is determined by the yes or no question “is the

element x ∈ A in the set B?”

Definition 1.14. Let A be a set and B ⊆ A a subset of A. The complement of B in A is

Bc := {x ∈ A : x /∈ B} (1.15)

and is also occasionally written as2

A \B. (1.16)

The RHS of (1.15) is read as the set of all elements x of A such that x is not in B.

Theorem 1.17 (De Morgan’s Laws). Let A and B be subsets of a set X. Then3

(A ∩B)c = Ac ∪Bc (1.18)

and

(A ∪B)c = Ac ∩Bc. (1.19)

Before proving this, a picture helps to convince oneself of the validity of this claim—see Figure

1.

Proof. We will prove (1.18) by showing first that (A∩B)c ⊆ Ac∪Bc and then Ac∪Bc ⊆ (A∩B)c.

2The latter notation is more precise as it shows that one is taking the complement with respect to an ambient

set.
3Using the more precise notation of set differences, these two facts would be written as X \ (A∩B) = (X \A)∪

(X \B) and X \ (A ∪B) = (X \A) ∩ (X \B), respectively.
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A BA ∩B

Ac ∪Bc

Figure 1: On the left, the sets A and B are colored green and orange, respectively. Their intersection

A ∩B is slightly yellow-ish, and the complement (A ∩B)c in X is everything except the yellow part. On

the right, Ac is colored red and Bc is colored blue and the union Ac∪Bc is the entire shaded region, from

which it can be seen that this equals the complement of A ∩B.

i. Case (A∩B)c ⊆ Ac∪Bc. Let x ∈ (A∩B)c. By definition, this means x ∈ X but x /∈ A∩B. In

other words, x is not an element of both A and B. Said differently, x is either not an element

of A or it is not an element of B, but this exactly means that x ∈ Ac ∪Bc.

ii. Case Ac ∪Bc ⊆ (A ∩B)c. Let x ∈ Ac ∪Bc and read the argument from above backwards.

The proof of (1.19) is left as an exercise. �

Definition 1.20. A function f from a set A to a set B is an assignment associating to every

x ∈ A, a unique element f(x) ∈ B. This is often written as f : A→ B or A
f−→ B.

Definition 1.21. A function f : A → B is one-to-one (a.k.a. injective) if for any two distinct

elements x, y ∈ A, then f(x) 6= f(y). f is onto (a.k.a. surjective) if for any z ∈ B, there exists an

x ∈ A such that f(x) = z. A function f : A → B is a bijection if it is one-to-one and onto. Two

sets A and B have the same cardinality when there exists a bijection from A to B.

Definition 1.22. Let A,B, and C be three sets. Let f : A→ B and g : B → C be two functions.

The composition g ◦ f is the function from A to C given by (g ◦ f)(x) := g
(
f(x)

)
for all x ∈ A.

Definition 1.23. Let A and B be two sets. The cartesian product of A and B is the set of ordered

pairs

A×B := {(a, b) : a ∈ A, b ∈ B}. (1.24)

Definition 1.25. A relation over the sets A and B is a subset of A×B.

Exercise 1.26. Let A and B be two sets and let f : A→ B be a function. Then the set

Rf :=
{(
a, f(x)

)
: a ∈ A

}
(1.27)

is a relation. Furthermore, any other relation R ⊆ A×B satisfying the conditions that4

a ∈ A ⇒ ∃ b ∈ B such that (a, b) ∈ R (1.28)

4This is read as “if a is an element of A, then there exists an element b of B such that (a, b) is an element of

R.”
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and5

(a, b), (a, b′) ∈ R ⇒ b = b′, (1.29)

then there exists a unique function f : A→ B such that R = Rf .

The previous exercise indicates how functions are related to relations satisfying certain condi-

tions.

Definition 1.30. Let A be a set. An equivalence relation on A is a relation R ⊆ A×A satisfying

the following three conditions.

(a) (a, a) ∈ R for all a ∈ A.

(b) If (a, a′) ∈ R, then (a′, a) ∈ R.

(c) If (a, a′), (a′, a′′) ∈ R, then (a, a′′) ∈ R.

Proposition 1.31. Cardinality is an equivalence relation,6 i.e. the following three facts hold.

(a) Every set A has the same cardinality as itself, i.e. there exists a bijection from A to A.

(b) If a set A has the same cardinality as a set B, then B has the same cardinality as A, i.e. if

there exists a bijection from A to B, then there exists a bijection from B to A.

(c) If a set A has the same cardinality as a set B and B has the same cardinality as a set C, then

A has the same cardinality as C, i.e. if there exists a bijection from A to B and a bijection

from B to C, then there exists a bijection from A to C.

Proof. space

(a) The identity function is a bijection.

(b) Let f : A → B be the bijection. Define a function f−1 : B → A by sending b ∈ B to the

unique a ∈ A such that f(a) = b. Then f−1 is a bijection.

(c) Let f : A→ B and g : B → C be such bijections. Then g ◦ f : A→ C is a bijection.

You, the reader, should check these claims. �

Definition 1.32. The function f−1 : B → A corresponding to a bijection f : A→ B in the proof

of Proposition 1.31 is called the inverse of f.

Definition 1.33. A set is finite if it is empty or has the cardinality of {1, 2, . . . , n} for some n ∈ N.
A set is countable if it has the cardinality of N. A set is uncountable otherwise.

5This is read as “if (a, b) and (a, b′) are two elements of R, then b and b′ are equal.”
6By definition, an equivalence relation must be defined on a set. Since there is no set of all sets (see [8]), this

statement does not even make sense. Instead, we can view the explanation as the statement if the claim noting the

resemblance to the definition of an equivalence relation.
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Proposition 1.34. Let B be a countable set and A ⊆ B a subset of B. Then A is finite or

countable.

Proof. See Abbott. �

Theorem 1.35 (Cantor’s theorem). Let A be a set. Then there does not exist a surjective function

A→ P(A).

Proof. See Abbott. �

The student is encouraged to read the NY Times article http://opinionator.blogs.nytimes.

com/2010/05/09/the-hilbert-hotel/?_r=1 on infinities and the references therein. In par-

ticular, the first few paragraphs (including the first few propositions and proofs) of Terence

Tao’s blog https://terrytao.wordpress.com/2009/11/05/the-no-self-defeating-object-

argument/ will be helpful for our next class. Cantor’s theorem is also there appearing as propo-

sition 5. More on sets at an intuitive level can be read about in Vilenkin’s fantastic book Stories

about Sets [8]. This book also contains some material that will be useful to get a better idea

of what’s going on in this class. I highly recommend checking it out. When you are ready for

something more advanced, the first article I recommend checking out is Leinster’s “Rethinking

set theory” [5]. This one is especially nice. It describes the natural numbers N from a seemingly

drastically different perspective. A more standard treatment of set theory is in Halmos’ book [4].

After this lecture, it is recommended the student works through problems 1, 2 (parts (c), (d),

and (e)), 9, and 10 on HW #1. Additional recommended exercises include exercises 1.2.3, 1.2.7

(b) & (d), 1.2.8, 1.2.9 (b) (but replace “g : R → R” with “g : X → Y, where X and Y are two

sets” and replace “A,B ⊆ R” with “A,B ⊆ X”), 1.2.13, 1.5.1, and 1.5.3 in [2] (or equivalently

exercises 1.2.2, 1.2.6 (b) & (d), N/A, 1.2.7 (b) with same comment, 1.2.12, 1.4.7, and 1.4.8 in [1]).
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2 September 1

In the previous lecture, we introduced the natural numbers N := {1, 2, 3, 4, . . . }. A closely related

set is the set of all integers

Z := {· · · ,−3,−2,−1, 0, 1, 2, 3, . . . }. (2.1)

The set of rational numbers is

Q :=

{
p

q
: p ∈ Z, q ∈ Z \ {0}

}
. (2.2)

where for a set A and a subset B ⊆ A of A,

A \B := {x ∈ A : x /∈ B}. (2.3)

Remark 2.4. The natural numbers N can be constructed from the empty set ∅. The integers Z
can be obtained from the natural numbers as the set of equivalence classes of elements (a, b) ∈ Z×Z
where (a, b) is equivalent to (a′, b′) if and only if there exists a c ∈ Z such that a+b′+c = a′+b+c.

The reason for this equivalence relation is that one thinks of the pair (a, b) as a− b. For reference,

this is known as the Grothendieck group construction. The rational numbers Q can also be obtained

from the integers “algebraically” as the ring of quotients. This is typically discussed in a course

on algebra [3]. However, the real numbers are quite different.

Proposition 2.5.
√

2 is not a rational number.

An easy fact helps to prove this.7

Lemma 2.6. A natural number p ∈ N is odd if and only if p2 is odd.8

Proof. If p is odd, i.e. of the form p = 2n+ 1 with n ∈ N ∪ {0}, then (2n+ 1)2 = 4n2 + 4n+ 1 =

2(2n2 + 2n) + 1, which is odd. Conversely, suppose p2 is odd and suppose to the contrary that p is

even, i.e. of the form p = 2m with m ∈ N. Then p2 = 4m2 = 2(2m2) contradicting the assumption

that p2 is odd. �

Proof of Proposition 2.5. Suppose, to the contrary, that
√

2 is a rational number, i.e.
√

2 = p
q

for

two integers p and q, which can be chosen so that p and q have no common factor. Squaring gives

2q2 = p2, which shows that p2 is even, which by Lemma 2.6 is even if and only if p is even. Hence,

p = 2n for some n ∈ N, so that 2q2 = 4n2 giving q2 = 2n2 showing that q2, and hence q, is even.

Thus, 2 is a common factor of p and q contradicting the assumption that p and q have no common

factor. �
7This is cheating a bit. One does not perform a proof in this backwards manner by first concocting a fact that is

useful to prove a claim. This fact was only realized after the proof was begun. When trying to prove statements, one

typically asks what the goal is and what all the assumptions and data are. Then one tries to use these assumptions

to achieve the goal. During the process, certain facts might be needed. Therefore, if one is trying to learn how to

prove statements, I recommend first reading the proof of the proposition and then referring to the lemma.
8Recall, “statementA if and only if statementB” means that “statementA implies statementB” and “statement

B implies statement A.”
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The following sequence of rational numbers is a better and better approximation to the value

corresponding to
√

2.

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, . . . . (2.7)

Notice that the rational numbers are getting bigger in this case (there are also sequences that

better approximate
√

2 that are not necesserily increasing). The set of rational numbers is an

example of an ordered field, and to better understand what real numbers are, we need to review

this concept.

Definition 2.8. A field is a set F together with addition and multiplication operations satisfying

the following conditions.9

(a) (commutativity of addition) x+ y = y + x for all x, y ∈ F.

(b) (commutativity of multiplication) xy = yx for all x, y ∈ F.

(c) (associativity of addition) (x+ y) + z = x+ (y + z) for all x, y, z ∈ F.

(d) (associativity of multiplication) (xy)z = x(yz) for all x, y, z ∈ F.

(e) (unit for addition) There exists an element 0 such that x+ 0 = x for all x ∈ F.

(f) (unit for multiplication) There exists an element 1 such that x1 = x for all x ∈ F.

(g) (inverses for addition) For every x ∈ F \ {0}, there exists an element −x ∈ F such that

x+ (−x) = 0.

(h) (inverses for multiplication) For every x ∈ F \ {0}, there exists an element x−1 ∈ F such that

xx−1 = 1.

(i) (distributive law) x(y + z) = xy + xz for every x, y, z ∈ F.

Example 2.9. As stated above, the rational numbers Q with their usual definitions of addition,

multiplication, and identities, is a field.

Example 2.10. Let p be a prime number. For another integer q ∈ Z, the number (known as the

remainder)

r := q mod p (2.11)

is the unique integer in {0, 1, . . . , p− 1} satisfying the condition that there exists an integer n ∈ Z
such that

q = np+ r. (2.12)

Then Zp := {0, 1, . . . , p− 1} together with addition and multiplication defined via modular arith-

metic, namely

x+ y := (x+ y) mod p ∀ x, y ∈ Zp (2.13)

9Mathematical objects, such as fields, are often defined by specifying data/structure (in this case, a set F

together with two binary functions +, · : F × F → F ) and conditions. Simply writing a definition does not

guarantee such objects exist. One should also have a variety of examples.
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and

xy := (xy) mod p ∀ x, y ∈ Zp (2.14)

is a field. The identity for addition is 0 and the identity for multiplication is 1. The only non-trivial

thing to check is that every nonzero element q ∈ Zp has a multiplicative inverse, meaning that

there exists a q−1 ∈ Zp such that

qq−1 mod p = 1 mod p. (2.15)

I leave showing the existence of such an inverse as an exercise (you may want to consult a book

on algebra or number theory [3]).

Note that neither N nor Z are fields with their usual definitions of addition, multiplication,

and identities. Even more surprisingly, Zn is not a field if n is not prime.

Definition 2.16. An ordering on a set K is a relation R ⊆ K × K, with (x, y) ∈ R written as

x ≤ y, satisfying the following conditions.

(a) For any pair of elements x, y ∈ K, either x ≤ y or y ≤ x (or both).

(b) If x ≤ y and y ≤ x, then x = y.

(c) If x ≤ y and y ≤ z, then x ≤ z.

If x ≤ y and x 6= y, then one often writes x < y. A set with an ordering is called an ordered set.

Definition 2.17. An ordered field is a field F together with an ordering ≤ satisfying the following.

(a) If y ≤ z with y, z ∈ F, then x+ y ≤ x+ z for all x ∈ F.

(b) If 0 ≤ x and 0 ≤ y, then 0 ≤ xy.

Example 2.18. Q is an ordered field.

Although Zp for p a prime number is a field, it is not an ordered field.

Exercise 2.19. Show why Z4 is not a field.

Exercise 2.20. Show why Z is not a field.

Exercise 2.21. Show why Zm is not a field if m ∈ N is composite, i.e. there exist a, b ∈ N \ {1}
such that m = ab.

Exercise 2.22. (Challenge)10 Show that Zp is a field if and only if p is prime.

Don’t forget, there is a Quiz on Tuesday on all the material we have covered! This includes

Sections 1.1, 1.2, and most of the subsection called “Field and Order Properties” from Section 8.4

(pages 245–246) in [2]. Because we ended class before getting to suprema and infema, the above

exercises are meant to give you additional preparation so you might want to think about them.

10You will not be responsible for being able to prove this on quizzes or exams.
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3 September 6

Definition 3.1. Let K be an ordered set. A subset A ⊆ K is bounded (from) above (in K) if

there exists an element y ∈ K such that for all x ∈ A, x ≤ y. In this case, y is called an upper

bound for A.

Note that y need not be an element of A in the definition of an upper bound for A. It is also

helpful to imagine the bounded from above condition x ≤ y for all x ∈ A as an arrow

x→ y ∀ x ∈ A. (3.2)

Example 3.3. Let

A := {r ∈ Q : r2 < 2}. (3.4)

Then 1.4143 ∈ Q is an upper bound for A. 1.4142 ∈ Q is not an upper bound for A because

1.4142 < 1.41421 ∈ A.

Definition 3.5. Let K be an ordered set and A ⊆ K a subset. An element y ∈ K is a least upper

bound (a.k.a. supremum) for A if y is an upper bound for A and if for any other upper bound

z ∈ K of A, then y ≤ z. In this case, the supremum is denoted by

supA = y (3.6)

(or more appropriately supK A = y). If such a least upper bound y exists and y ∈ A, then y is

said to be a maximum of A.

Analogous definitions can be made for a greatest lower bound (a.k.a. infimum) and a minimum.

The infimum of A is denoted by inf A. In terms of arrows, we may sometimes use the notation

x

y

z
��

''
77 (3.7)

to denote the property of the least upper bound. We will later see that this is an example of a

universal property, and we therefore refer to it as the universal property of the least upper bound

of a set.

Remark 3.8. It might also be helpful to think of the supremum of A in K in the following

diagrammatical way. Imagine we could draw all the elements of A

• • • • • • •// // // // // // , (3.9)

where the arrows denote that the element at the tail of an arrow is less than or equal to the element

on the head of an arrow. An upper bound of A is an element ? in K (it might be in A) such that

• • • • • • •

?

// // // // // //

++))%% �� 

 {{vv

(3.10)
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meaning that ? is greater than or equal to every element of A. A least upper bound is an element

� in K such that it is an upper bound of A (meaning it is one of the ?’s from before) and that for

any other upper bound ? of A,

� ?// (3.11)

In other words, the least upper bound of A is the “closest” upper bound of A.

Proposition 3.12. Let K be an ordered set and A ⊆ K. If supK A exists, it is unique.

Proof. See Abbott (this is a good exercise, so try it on your own). �

Example 3.13. Even though the set A := {r ∈ Q : r2 < 2} is bounded from above, A does not

have a supremum in Q.

This example also motivates the need for a number system that contains the least upper bound

of a bounded set in Q. But first, we look at one more example.

Example 3.14. Let

A :=
{m
n

: m,n ∈ N and m < n
}
. (3.15)

The set of such elements looks like

m = 1 m = 2 m = 3 m = 4

n = 1

n = 2 1
2

n = 3 1
3

2
3

n = 4 1
4

2
4

3
4

n = 5 1
5

2
5

3
5

4
5

(3.16)

On the left column, we have a subset of rational numbers given by 1
n

for all natural numbers n > 1.

As n increases, these numbers tend to 0. On the diagonal, the rational numbers are increasing and

are of the form m
m+1

for all natural numbers m. As m increases, these numbers tend to 1. Thus

supA = 1 & inf A = 0. (3.17)

Exercise 3.18. Prove these claims (Hint: you will be better equipped to do this after Lemma

3.31).

Theorem 3.19. There exists an ordered field R satisfying the conditions

(a) every nonempty subset of R that is bounded above has a least upper bound and

(b) R contains Q as a subfield.

We will not prove this theorem until possibly after we have introduced Cauchy sequences in a

few weeks. We will simply take this fact for granted. Condition (a) is referred to as the Axiom of

Completeness. We will treat the ordered field R as we normally have done before you signed up

for this class.
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Remark 3.20. The ordered field R in Theorem 3.19 is unique in a certain sense. To state this

uniqueness property rigorously, one needs to introduce the notion of a morphism of ordered fields.

A morphism of ordered fields is a function from one field to another satisfying certain properties. If

there are two fields R and R′ satisfying the conditions of Theorem 3.19, then there exist a morphism

f : R→ R′ and a morphism g : R′ → R such that f ◦ g = idR′ and g ◦ f = idR. In other words, the

two fields are isomorphic. In fact, the uniqueness of R is even better than this, but to explain that

further, one should introduce limits in categories, which we probably will not, at least not yet.

See https://ncatlab.org/nlab/show/real+number#the_complete_ordered_field and http:

//math.stackexchange.com/questions/839848/category-theoretic-description-of-the-real-

numbers for further discussion.

Definition 3.21. A (finite) interval in R is a subset of R of one of the following forms

[a, b] := {x ∈ R : a ≤ x ≤ b} (3.22)

(a, b) := {x ∈ R : a < x < b} (3.23)

[a, b) := {x ∈ R : a ≤ x < b} (3.24)

(a, b] := {x ∈ R : a < x ≤ b} (3.25)

Here a, b ∈ R with a ≤ b. The first is called a closed interval, the second is called an open interval,

and either of the last two is called a half-open interval.

Theorem 3.26 (Nested Interval Property). Let

In := [an, bn] (3.27)

be a sequence of closed intervals in R satisfying

I1 ⊇ I2 ⊇ I3 ⊇ · · · . (3.28)

Then
∞⋂
n=1

In 6= ∅. (3.29)

Proof. The goal is to construct an element of
⋂∞
n=1 In. First note that the set A := {a1, a2, a3, . . . }

is bounded above. In fact, every bn serves as one such upper bound. By the Axiom of Completeness,

a := supA exists. We claim that a ∈
⋂∞
n=1 In, i.e. a ∈ In for all n ∈ N. Since a is an upper bound

of A, a ≥ an. Furthermore, a ≤ bn by the universal property of least upper bounds (since an ≤ bn
and an ≤ a, it follows that a ≤ bn). Hence, a ∈ In. �

It should be clear that there is no smallest positive rational number nor is there any largest

rational number. For instance, to see the former, let p
q

be the supposed smallest number. Then
p
q+1

is smaller still and rational. This is slightly less clear in R because we have added several new

elements, but it is nevertheless true.

Definition 3.30. Let R+ denote the set of strictly positive real numbers, R+ := {r ∈ R : r > 0}.

13

https://ncatlab.org/nlab/show/real+number#the_complete_ordered_field
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Lemma 3.31. Let A ⊆ R be a bounded subset of R and let s ∈ R be such an upper bound. Then

s = supA if and only if for every ε ∈ R+, there exists an element a ∈ A such that s− ε < a.

Proof. See Lemma 1.3.8 in [2] (or Lemma 1.3.7 in [1]). �

Proposition 3.32 (Arithmetic of sup). Let A and B be nonempty bounded subsets of R. Define

the sets

A+B := {a+ b : a ∈ A, b ∈ B}
AB := {ab : a ∈ A, b ∈ B}.

(3.33)

Then

sup(A+B) = sup(A) + sup(B). (3.34)

Furthermore, if A and B are subsets of nonnegative numbers, then

sup(AB) = sup(A) sup(B). (3.35)

Proof. The first part of this is listed as Exercise 1.3.6 in [2]. The second part is also left to the

student as an exercise.11 �

After this lecture, it is recommended the student works through problems 2, 3, 4, 5, and 6

on HW #1. Additional recommended exercises include exercises 1.2.7, 1.3.5, 1.3.6, 1.3.7, 1.3.8,

1.3.11, and 1.4.4 from [2] (or equivalently exercises 1.2.6, 1.3.5, 1.3.9, 1.3.7, 1.3.6, 1.3.4, and N/A

from [1]).

11These proofs are nontrivial!
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4 September 8

Theorem 4.1 (Archimedean Property of R). space

(a) For every x ∈ R, there exists an n ∈ N satisfying n > x.

(b) For every y ∈ R+, there exists an n ∈ N satisfying 1
n
< y.

Abbott has a great discussion following this theorem, please read it.

Proof. space

(a) Suppose, to the contrary, that x ≥ n for all n ∈ N, i.e. N is a bounded subset of R. By the

Axiom of Completeness, a least upper bound of N exists. Hence, let s := supN in R. Because

R is an ordered field, s − 1 ∈ R. Since s − 1 < s, s − 1 is not an upper bound of N. Hence,

there exists an n ∈ N such that s − 1 < n, i.e. s < n + 1, which shows that s cannot be an

upper bound of N, contradicting our assumption.

(b) By (a), there exists an n ∈ N such that n > 1
y
, i.e. 1

n
< y.

�

Theorem 4.2 (Density of Q and I in R). space

(a) For any two real numbers a, b ∈ R with a < b, there exists a rational number r ∈ Q satisfying

a < r < b.

(b) For any two real numbers a, b ∈ R with a < b, there exists an irrational number t ∈ Q satisfying

a < t < b.

Proof. space

(a) By assumption,12 b − a > 0. By the Archimedian Property of R (Theorem 4.1), there exists

an n satisfying
1

n
< b− a. (4.3)

It therefore suffices to find an integer m such that na < m < nb or equivalently, a < m
n
< b.

Again by the Archimedean Property of R, there exists an integer M satisfying M > na. Let

m be the smallest such integer. Hence, m − 1 ≤ na and na < m. The first inequality can be

rewritten as

m ≤ na+ 1

< n

(
b− 1

n

)
+ 1 by (4.3)

= nb.

(4.4)

This proves na < m < nb and hence a < m
n
< b.

12The idea is to first find a rational number smaller than the spacing between a and b. Then, using this rational

number, we will scale it by successive positive integers until the value lies within (a, b). Abbot has a nice picture

for this.
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(b) Note that
b√
2
− a√

2
=
b− a√

2
> 0 (4.5)

since b− a > 0. Hence, by part (a), there exists a rational number m
n

satisfying

a√
2
<
m

n
<

b√
2
. (4.6)

Multiplying by
√

2 throughout gives

a <
m

n

√
2 < b. (4.7)

The claim then follows from from the fact that m
n

√
2 is irrational.13

�

Theorem 4.8. 14 For every positive real number x ∈ R+ and every natural number n ∈ N, there

exists a unique positive real number y ∈ R such that yn = x. This number y is written as x1/n or
n
√
x.

Before we prove this, let’s have a discussion.

(a) What are our data/assumptions? These are a real number x > 0 and a positive integer n > 0.

(b) What are our outputs/goals? This is the construction of a real number y.

(c) What are the conditions? The conditions required of y are that it satisfies yn = x and that

there is no other z > 0 such that zn = x.

The idea of the following proof will be to consider the set of all real numbers t such that tn < x.

If this set is nonempty and bounded from above, we can use the Axiom of Completeness for R to

construct our desired y. Then we will have to prove that y satisfies the required condition yn = x

and that there is no other z such that zn = x. A proper and clear proof is given in Rudin’s book [6].

The following proof hopefully will provide a little more intuition and explanation.

Proof of Theorem 4.8. Let

E := {t ∈ R : tn < x}. (4.9)

E is nonempty because the number t := x
1+x

satisfies

0 < t < 1 & t < x (4.10)

13You should check this. In fact, you should do Exercise 1.4.2 in [1] (Exercise 1.4.1 in [2]), which is a more

general fact.
14I was unable to prove Theorem 4.8 and Corollary 4.25 during the class time.
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and therefore satisfies15

tn < t < x. (4.11)

Let s := 1 + x so that s > 1 and s > x. Hence,16 sn > s > x showing that s is an upper bound for

E. Hence, by the Axiom of Completeness, the supremum exists. Let

y := supE. (4.12)

To show that yn = x, we will prove that yn < x and yn > x both lead to contradictions.

Assume yn < x. The goal is to find an integer m > 0 such that y+ 1
m

is still in E, contradicting

that y is an upper bound. To show the existence of such an integer m, we will work backwards to

obtain a condition on m such that (
y +

1

m

)n
< x. (4.13)

Note that subtracting yn from this desired inequality turns it into(
y +

1

m

)n
− yn < x− yn. (4.14)

Now, the right-hand-side is a positive quantity by assumption.17 Meanwhile, the left-hand-side is

of the form bn − an with b > a > 0, which can be factored into18

bn − an = (b− a)
n∑
k=1

bn−kak−1 (4.15)

Since b > a,

bn − an < (b− a)
n∑
k=1

bn−kbk−1 = (b− a)
n∑
k=1

bn−1 = (b− a)nbn−1. (4.16)

15It’s not immediately obvious why this is true. We will prove this by induction by first proving the base case and

then doing the induction step. By assumption, 0 < a < 1, i.e. 0 < a and a < 1. Rearranging the latter inequality

gives 0 < 1− a. By Axiom (b) of the definition of R being an ordered field, 0 ≤ a(1− a), which upon rearranging

proves that a2 ≤ a. Now, a2 6= a because if this were true, dividing by a would give a = 1, which contradicts our

initial assumption. Now suppose that 0 < an < a < 1 for some integer n. Then by Axiom (b) of the definition of

R being an ordered field, 0 ≤ an(1 − a), which shows an+1 ≤ an < a, proving the induction step. The reason this

proof is so complicated is because we are technically assuming only that R is an ordered field containing Q as a

subfield and there are many common facts we have not yet proved about R. We will often avoid these technicalities

for now, but the preceding argument indicates what one might do to proceed carefully.
16A similar proof to the previous footnote applies here by considering 1

s .
17It would be nice if we could use the Archimedean Property here, but that would require an inequality of the

form 1
mu < x − yn, where u only depends on x, y, and n but does not depend on m. We must therefore find an

explicit expression for u to achieve this goal.
18You should check this yourself, but here is the calculation:

(b− a)

n∑
k=1

bn−kak−1 =

n∑
k=1

bn−(k−1)ak−1 −
n∑
k=1

bn−kak = bn +

(
n−1∑
k=1

bn−kak − bn−kak
)
− an = bn − an.
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In our case, this means19(
y +

1

m

)n
− yn < n

m

(
y +

1

m

)n−1

<
n(y + 1)n−1

m
(4.17)

as long as m > 1. In order to prove our desired inequality (4.14), we should choose m so that

n(y + 1)n−1

m
< x− yn (4.18)

but rearranging this inequality gives

1

m
<

x− yn

n(y + 1)n−1
. (4.19)

Such an integer m > 1 exists by the Archimedean Property of R since the right-hand-side is a

positive quantity.

Now assume yn > x. The goal is to find an integer m > 0 such that y− 1
m

is still an upper bound

for E, contradicting that y is the least such upper bound. Again, we work backwards restricting

m to satisfy
(
y − 1

m

)n
> x. This time, multiplying by −1 and adding yn to both sides gives

yn −
(
y − 1

m

)n
< yn − x. (4.20)

This is again in the form bn− an so the same trick should work. Expanding out the left-hand-side

and using the earlier inequality gives

yn −
(
y − 1

m

)n
<

n

m

(
y − 1

m

)n−1

<
nyn−1

m
(4.21)

as long as m > 1 and y > 1
m

(once we show an m exists, we can choose a larger m if necessary so

that this latter condition can be satisfied by using the Archimedean Property again). In order to

prove our desired inequality (4.20), we should choose m so that

nyn−1

m
< yn − x, (4.22)

but rearranging this inequality gives
1

m
<
yn − x
nyn−1

. (4.23)

Such an integer m > 1 exists by the Archimedean Property of R since the right-hand-side is a

positive quantity.

Finally, now that we have shown an n-th root exists, we must show it is unique. Suppose that

y1 and y2 are two positive numbers that satisfy yn1 = yn2 = x. Then either y1 < y2, y2 < y1, or

y1 = y2. The first is not possible because

yn1 < yn−1
1 y2 < · · · < y1y

n−1
2 < yn2 . (4.24)

A similar argument shows that the second is impossible. Thus, y1 = y2 and the n-th root is

unique. �
19Realizing that the previous inequality is one way to prove our claim is the least obvious step in the proof and

requires some insight. If you have a simpler proof or a clear explanation for how to easily see this, please let me

know!
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Corollary 4.25. For every pair of positive real numbers a, b ∈ R+ and every positive integer

n ∈ N,
(ab)1/n = a1/nb1/n. (4.26)

Proof. Since the n-th root of any positive real number exists by the previous theorem, it makes

sense to set α := a1/n and β := b1/n. Then

αnβn

ab (αβ)n (4.27)

Taking the n-th root of both ends gives

(ab)1/n = αβ = a1/nb1/n. (4.28)

By the uniqueness of such roots by the same theorem, the right-hand-side is the unique n-th root

of ab. �

Theorem 4.29. space

(a) The set Q of rational numbers is countable.

(b) The set R of real numbers is uncountable.

Proof. space

(a) Let A0 := {0} and set

An :=

{
±p
q

: where p, q ∈ N have no common factors and satisfy p+ q = n

}
(4.30)

for each n ∈ N. Note that the rational number p
q

(with p and q having no factors in common)

appears in the set A|p|+|q| showing that

Q ⊆
∞⋃
n=0

An. (4.31)

This calculation also shows that p
q

appears in An for a unique n ∈ N. Hence, An ∩ Am = ∅ if

n 6= m. Conversely, An ⊂ Q for all n ∈ N so that

∞⋃
n=0

An ⊆ Q. (4.32)

This shows that
∞⋃
n=0

An = Q. (4.33)

Since the left-hand-side is a countable union of finite sets, it is countable.20

20In fact, a countable union of countable sets is countable. This is claimed in Theorem 1.5.8 in [2] with a proof

outlined in Exercise 1.5.3 in [2]. I recommend you work this proof out (you should have actually already done it

since I suggested it on day 1). A proof of this is also explained in the references provided at the end of the first

lecture.
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(b) Suppose, to the contrary, that R is countable. Then there exists a bijection f : N→ R and let

xn := f(n) for all n ∈ N. Let I1 := [a1, b1] be a finite closed interval that does not contain x1.

Suppose that In := [an, bn] has been inductively defined to satisfy the condition that In ⊆ In−1

and xn /∈ In. If xn+1 /∈ In, then one can set In+1 = In. If xn+1 ∈ In, then an ≤ xn+1 ≤ bn with a

strict inequality on at least one side. Without loss of generality, suppose that an < xn+1. Then

by the Density of Q and I in R, there exists a real number bn+1 satisfying an < bn+1 < xn+1.

Hence, set In+1 := [an, bn+1]. A similar argument can be done if xn+1 < bn. Thus, the collection

{In}n∈N satisfies

In+1 ⊆ In & xn+1 /∈ In+1 ∀ n ∈ N. (4.34)

By the Nested Interval Property,

J :=
∞⋂
n=1

In 6= ∅. (4.35)

Let x be such an element. By assumption that R is countable, there exists an m ∈ N such that

f(m) = x. But by construction, x /∈ Im and therefore cannot be in J, which is a contradiction.

�

After this lecture, it is recommended the student works through the rest of the problems on

HW #1. Additional recommended exercises include 1.4.5, 1.4.6, and 1.4.7 from [2] (or equivalently

exercises 1.4.3, N/A, and 1.4.6. from [1]). Any other exercises in Abbot that have not already

been mentioned are also good. In particular, go over Cantor’s argument for the uncountability of

R. Don’t forget that HW #1 is due the next class!
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5 September 13

Abbott has some great motivation for some of the weird properties possessed by infinite sums in

Section 2.1. (you should read it). Given a countable set of real numbers {a1, a2, a3, . . . }, what is

the meaning of
∑

n an? Abbott discusses how the order in which the sum is taken may alter the

value of such a sum so that it doesn’t make sense to define the sum of the elements of an arbitrary

countable set such as {a1, a2, a3, . . . }.21 However, perhaps the sum may be defined if the order is

specified. This leads one to the notion of a sequence.

Definition 5.1. A sequence of real numbers is a function N→ R.

Definition 5.2. A set A is at most countable if A is either finite or countable.

Proposition 5.3. A sequence determines, and is determined by, an at most countable subset

A ⊆ R together with a bijection {1, . . . , N} → A if A is finite and has cardinality N ∈ N or

N→ A if A is countable.

Proof. space

(⇒) Let a : N → R be a sequence. Then the image of a, namely a(N), is an at most countable

subset of R.22

(⇐) Let A ⊆ R be an at most countable subset of R. If A is countable, let a : N→ A be a bijection.

Since A ⊆ R, this precisely defines a sequence N → A ↪→ R.23 If A has cardinality N ∈ N, let

a : {1, . . . , N} → A be a bijection. Set

a(n) := a(N) ∀ n > N. (5.4)

This defines a function a : N→ A ↪→ R and hence a sequence. �

Hence, a sequence can be viewed as an at most countable subset of real numbers with additional

data, namely a particular order in which the elements are specified. Note that the sequence

associated to an at most countable subset of R is not unique. Because of Proposition 5.3, we can

write a sequence a : N → R as {an}n∈N or more abusively as {an}. It is also common to write

a sequence as (a1, a2, a3, . . . ) or more succinctly as (an)n∈N or abusively as (an). I personally find

most of these a bit ambiguous and will mostly use a : N→ R or (an)n∈N to avoid as much confusion

as possible.

Definition 5.5. Let a : N→ R be a sequence24 of real numbers, whose value at n ∈ N is written

as an. The partial sums of a is the sequence S : N→ R given by

N 3 m 7→ Sm :=
m∑
n=1

an. (5.6)

21Remember, elements in a set are not ordered in any particular way. The sets {cat,dog} and {dog, cat} are

exactly the same.
22This is left as an exercise: Let A be a countable set, X a set, and f : A→ X a function. Then f(A) is an at

most countable subset of X.
23The notation A ↪→ R is used to describe the inclusion function associated to a subset A ⊆ R and is often used

for more general subsets of arbitrary sets.
24An at most countable subset instead of a sequence would not be enough data to unambiguously define the

partial sums.
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If all the an are non-negative, one might try to define

∞∑
n=1

an
?

:= sup{S1, S2, . . . } (5.7)

if the supremum is defined. In fact, we will define
∑∞

n=1 an more generally for arbitrary sequences

and prove that (5.7) is true. This result will follow from the Monotone Convergence Theorem and

will be the subject of the next lecture.

Definition 5.8. A sequence a : N→ R converges to a real number lim a if for every ε > 0, there

exists an N ∈ N such that

|an − lim a| < ε ∀ n ≥ N. (5.9)

If a sequence converges, it is said to be convergent. If a sequence does not converge to any real

number, it is said to be divergent.

If we use the notation (an)n∈N to describe a sequence, the limit is often written as lim
n→∞

an.

Note that N depends on ε in (5.9). If we wanted to be a bit more clear, we might write Nε since

a different choice of ε may require a different choice of N.

Proposition 5.10. If a sequence a : N→ R converges, then the number it converges to is unique.

Proof. Suppose a converges to both real numbers x and y. Then for every ε > 0, there exists an

N ∈ N such that

|an − x| <
ε

2
& |an − y| <

ε

2
∀ n ≥ N (5.11)

(because such an N exists for both x and y, we can take the largest of the two values). Hence, for

any ε > 0,

0 ≤ |x− y| = |x− an + an − y| ≤ |x− an|+ |an − y| <
ε

2
+
ε

2
= ε (5.12)

for all n ≥ N by the triangle inequality.25 Thus |x− y| = 0 (by Lemma 3.31 for infima, which was

part of your HW #1) so that x = y. �

Example 5.13. Abbott considers the sequence

N 3 n 7→ 1√
n

(5.14)

and shows that it converges to 0. Please look at the proof and understand how given any ε > 0,

the required Nε is constructed.

An example of a sequence that does not converge to any real number is the sequence

N 3 n 7→ (−1)n. (5.15)

Exercise 5.16. Show that

lim
n→∞

ln

(
1 +

1

n

)
= 0. (5.17)

Recall, the logarithm to the base e was defined in HW #1.
25The triangle inequality was an exercise in Chapter 1 of Abbot.
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Example 5.18. Fix p > 1. Consider the sequence of partial sums

N 3 n 7→ an :=
n∑
k=1

1

pk
(5.19)

and find the limit lim
n→∞

an. To do this, it helps to write out the first few such partial sums

a1 =
1

p
, a2 =

p+ 1

p2
, a3 =

p2 + p+ 1

p3
, a4 =

p3 + p2 + p+ 1

p4
(5.20)

and more generally

an =
pn−1 + pn−2 + · · ·+ p+ 1

pn
, (5.21)

which can be rewritten as

an =
(p− 1)(pn−1 + pn−2 + · · ·+ p+ 1)

(p− 1)pn
=

pn − 1

(p− 1)pn
(5.22)

(the second equality follows from a formula we used in Lecture 4). We claim (as you might now

guess)

lim
n→∞

an =
1

p− 1
. (5.23)

To check this, we take the difference∣∣∣∣an − 1

p− 1

∣∣∣∣ =
1

(p− 1)pn
(5.24)

Given an ε > 0, we want to find an N ∈ N such that

1

(p− 1)pn
< ε (5.25)

for all n ≥ N. Hence, we want to solve this equation for n. Rearranging gives

1

ε(p− 1)
< pn. (5.26)

Applying the base p logarithm (which was defined in HW #1) gives

logp

(
1

ε(p− 1)

)
< n. (5.27)

By the Archimedean Property of R, there exists an Nε such that

logp

(
1

ε(p− 1)

)
< Nε. (5.28)

Hence, we have found the desired Nε ∈ N. We should check that this Nε in fact works. Therefore,

let ε > 0 be fixed. Then, choosing Nε as in (5.28),∣∣∣∣an − 1

p− 1

∣∣∣∣ =
1

(p− 1)pn

≤ 1

(p− 1)plogp( 1
ε(p−1))

∀ n ≥ Nε

= ε

(5.29)

proving (5.23).
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Proving this result would have been much simpler if we could prove that

lim
n→∞

pn − 1

(p− 1)pn
=

lim
n→∞

(
1− 1

pn

)
lim
n→∞

(p− 1)
. (5.30)

This is in fact true, but we need to prove that we can manipulate limits in this fashion. Before

stating the general fact (Theorem 5.35), we need a definition and a result to help us.

Definition 5.31. A sequence a : N→ R is bounded if there exists a real number M > 0 such that

|an| ≤ M for all n ∈ N (equivalently, if the subset a(N) is bounded above by M and below by

−M).

Lemma 5.32. Every convergent sequence is bounded.

Proof. Let a : N → R be a sequence that converges with limit lim a ∈ R. Fix some ε > 0. Then,

by definition of a converging to lim a, there exists an N ∈ N such that

|an − lim a| < ε ∀ n ≥ N (5.33)

Set

M := max
{
|a1|, |a2|, . . . , |aN−1|, | lim a|+ ε

}
. (5.34)

Then the sequence a is bounded by M. �

Theorem 5.35 (Algebraic Limit Theorem for Sequences). Let a, b : N → R be two sequences.

Then

(a) lim
n→∞

(xan) = x lim
n→∞

an for all x ∈ R,

(b) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn,

(c) lim
n→∞

(anbn) =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
, and

(d) lim
n→∞

(
an
bn

)
=

lim
n→∞

an

lim
n→∞

bn
, provided that26 lim

n→∞
bn 6= 0.

We will prove this in the next lecture.

Exercise 5.36. (Challenge). Make rigorous sense of the expression√√√√
1−

√
2−

√
3−

√
4−
√

5 · · · (5.37)

and determine if it has a (real) numerical value. You do not need to determine this value if it

exists. Email your solution to Professor Stuart Sidney by 3:00 PM September 22, 2016 for a prize.

After this lecture, it is recommended the student works through problems 1, 2, and 3 on HW

#2. You may use the Algebraic Limit Theorem for any problems unless it is explicitly stated in

the problem that you should not. Additional recommended exercises include exercises 2.2.4, 2.2.5,

2.2.7, 2.3.1, 2.3.6, 2.3.7, 2.3.9, 2.3.10, and 2.3.12 in [2] (I’ll upload the corresponding exercise in [1]

shortly).

26If bn = 0 for some n, the meaning of an
bn

is meant only for sufficiently large n, so that bn 6= 0.
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6 September 15

Proof of the Algebraic Limit Theorem. you found me!

(a) Notice that the claim is obviously true when x = 0.27 Hence, suppose that x 6= 0. Let ε > 0.

By assumption, there exists an N ∈ N such that28

|an − lim a| < ε

|x|
∀ n ≥ N. (6.1)

Multiplying throughout by |x| gives

|x||an − lim a| = |xan − x lim a| < ε ∀ n ≥ N. (6.2)

(b) Let ε > 0. By assumption, there exist Na, Nb ∈ N such that29

|an − lim a| < ε

2
∀ n ≥ Na & |bn − lim b| < ε

2
∀ n ≥ Nb. (6.3)

Let N := max{Na, Nb}. Then, by the triangle identity∣∣(an + bn)− (lim a+ lim b)
∣∣ =

∣∣an − lim a+ bn − lim b
∣∣

≤ |an − lim a|+ |bn − lim b|

<
ε

2
+
ε

2
∀ n ≥ N

= ε ∀ n ≥ N.

(6.4)

(c) First consider the case lim b 6= 0. Since convergent sequences are bounded (Lemma 5.32), there

exists an M > 0 such that

|an| ≤M ∀ n ∈ N. (6.5)

Let ε > 0. Since (bn)n∈N converges to lim b, there exists an Nb ∈ N such that

|bn − lim b| < ε

2M
∀ n ≥ Nb. (6.6)

Since (an)n∈N converges to lim a, there exists an Na ∈ N such that

|an − lim a| < ε

2| lim b|
∀ n ≥ Na. (6.7)

27I normally dislike saying that things are ‘obvious’ because it presupposes some superiority. Nevertheless, this

really is obvious if you think about it: the sequence constructed is constant, so the only thing to show is that a

constant sequence converges to that same constant. It’s good practice to check your understanding of the definition

of convergence by writing these few details out explicitly.
28The choice of ε

|x| was made by first thinking about the desired conclusion, namely, the calculation in (6.2).
29Again, the choice of ε2 was made by first thinking about the desired conclusion, namely, the calculation in (6.4).

In practice, one works backwards. This should not be too unfamiliar. When you learn about integrals in calculus,

usually you think about functions whose derivatives are what you start with. With practice, you get better and

better at ‘guessing.’
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Putting these two conclusions together, using the triangle inequality, and settingN := max{Na, Nb}
gives

|anbn − lim a lim b| =
∣∣anbn − an lim b+ an lim b− lim a lim b

∣∣
=
∣∣an(bn − lim b) + lim b(an − lim a)

∣∣
≤
∣∣an(bn − lim b)

∣∣+
∣∣ lim b(an − lim a)

∣∣
= |an||bn − lim b|+ | lim b||an − lim a|

< M
ε

2M
+ | lim b| ε

2| lim b|
∀ n ≥ N

= ε ∀ n ≥ N.

(6.8)

Now consider the case lim b = 0. Let M be as above. Then, since lim b = 0, there exists an

N ′ ∈ N such that

|bn| <
ε

M
∀ n ≥ N ′. (6.9)

Therefore,

|anbn| = |an||bn| < M
ε

M
= ε ∀ n ≥ N ′. (6.10)

(d) Because lim b 6= 0, there exists an N1 ∈ N and a δ > 0 such that

|bn| > δ ∀ n ≥ N1. (6.11)

Since (bn)n∈N converges, there exists an N2 ∈ N such that

|bn − lim b| < εδ lim b ∀ n ≥ N2. (6.12)

Setting N := max{N1, N2} and putting these two together gives∣∣∣∣ 1

bn
− 1

lim b

∣∣∣∣ =

∣∣∣∣ lim b− bn
bn lim b

∣∣∣∣
=

1

|bn|
1

| lim b|
|bn − lim b|

<
1

δ

1

| lim b|
εδ lim b ∀ n ≥ N

= ε ∀ n ≥ N,

(6.13)

which proves that

lim
n→∞

1

bn
=

1

lim b
. (6.14)

The claim lim
n→∞

an
bn

=
lim a

lim b
then follows from the fact that lim

n→∞

an
bn

= lim
n→∞

(
an

1

bn

)
and part

(c) of this Theorem.

�

Theorem 6.15. [Order Limit Theorem] Let a, b : N→ R be two convergent sequences with limits

lim a and lim b, respectively, satisfying an ≤ bn for all n ∈ N. Then lim a ≤ lim b.
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Proof. See Abbott. �

Definition 6.16. A sequence a : N → R is non-decreasing if an+1 ≥ an for all n ∈ N and

non-increasing if an+1 ≤ an for all n ∈ N. A sequence a : N → R is monotone if it is either

non-decreasing or non-increasing.

Theorem 6.17 (Monotone Convergence Theorem). If a sequence a : N → R is monotone and

bounded, then it converges. In fact, if a is non-decreasing, then lim a = sup{a1, a2, . . . }. If a is

non-increasing, the lim a = inf{a1, a2, . . . }.

Note that the claim in the proof makes sense because the supremum and infimum of a bounded

set always exists in R by the Axiom of Completeness. Also note that this confirms our earlier

guess from the beginning of lecture 5 about how we should define infinite sums whose terms are

all non-negative.

Proof of Theorem 6.17. We will prove the statement for a non-decreasing. Set s := sup{a1, a2, . . . }
and let ε > 0. Since s is the supremum, s − ε is not an upper bound of a(N). Hence, there exists

an N ∈ N such that s − ε < aN . Since a is non-decreasing, aN ≤ an for all n ≥ N. Since s is an

upper bound of a(N), an ≤ s for all n ∈ N. Putting all these inequalities together gives

s− ε < aN ≤ an ≤ s < s+ ε ∀ n ≥ N. (6.18)

Subtracting s from every term gives

−ε < an − s < ε ∀ n ≥ N, (6.19)

i.e.

|an − s| < ε ∀ n ≥ N. (6.20)

Hence lim a = sup{a1, a2, . . . }. �

Definition 6.21. Let a : N → R be a sequence and let S : N → R be the associated sequence of

partial sums (see Definition 5.5). Then the expression30

∞∑
n=1

an := limS (6.22)

is called an infinite series. The infinite series
∑∞

n=1 an is said to converge if limS exists.

Example 6.23. For every n ∈ N, let an := 1
n2 . Then the infinite series

∞∑
n=1

1

n2
(6.24)

associated to a converges. This follows from a slick calculation showing that the partial sums are

bounded by 2 (see Abbott). Because the partial sum sequence is non-decreasing, the Monotone

30There is some abuse of notation in (6.22) because the limit limS need not exist.
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Convergence Theorem shows that this sequence converges. Calculating the limit is another story

though and is quite involved. Time permitting, we may prove

∞∑
n=1

1

n2
=
π2

6
(6.25)

later in this course.

After this lecture, it is recommended the student works through problems 4 and 5 on HW #2.

Additional recommended exercises include exercises 2.4.1, 2.4.6, and 2.4.7 in [2] (I’ll upload the

corresponding exercise in [1] shortly).
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7 September 20

Last week, we learned that convergent sequences are bounded. The converse, however, is false: a

bounded sequence need not converge. Abbott provides several examples. Nevertheless, a bounded

sequence does have convergent subsequences. But before we discuss subsequences, let us talk about

sequences that we know converge, but for which we might not know the limit. Recall, to show

that a sequence a : N → R converges, we needed to know the limit lim a to prove that for any

ε > 0, there exists an N ∈ N such that |an− lim a| < ε for all n ≥ N. If we did not know this limit,

given our current state, we might not be able to prove it converges. The only method we have to

prove it converges to something is if we prove it is bounded and monotone. These are somewhat

stringent conditions! But there are other ways. What if the distance between elements far out in

the sequence tends to zero very quickly? This is the motivation behind Cauchy sequences.31

Definition 7.1. A sequence a : N → R is a Cauchy sequence if for every ε > 0, there exists an

N ∈ N such that

|an − am| < ε ∀ n,m ≥ N. (7.2)

Cauchy sequences are closely related to convergent sequences.

Theorem 7.3. Every convergent sequence is a Cauchy sequence.

Proof. This is one of your homework problems. �

Cauchy sequences are incredibly useful because of the following phenomenal fact showing that

the converse is true.

Theorem 7.4 (Cauchy Criterion). A sequence converges if and only if it is a Cauchy sequence.

Remark 7.5. The sequence must take values in R or a suitable space for this theorem to hold.

When/if you learn about sequences in arbitrary topological spaces, this theorem may fail. Never-

theless, it is true in a plethora of topological spaces.

The usefulness of this theorem is paramount. It can be used to prove that certain solutions

to rather complicated partial differential equations exist. More generally, it can be used to prove

many interesting properties of operators in analysis, which themselves tell us important results in

quantum mechanics. The reason is because if you have an approximate solution to some problem

but you do not know the actual solution, and you can construct a sequence of solutions that

are better and better approximations, you might be able to check if these solutions converge to

something by checking that this sequence (of functions) is Cauchy. If they are, then by Theorem

7.4, that means the solution exists! We will prove Theorem 7.4 today after introducing several

concepts and facts, which may have otherwise seemed un-motivating.

Definition 7.6. Let a : N → R be a sequence. A subsequence of a is a sequence of the form

N f−→ N a−→ R, where f : N → N is a non-decreasing one-to-one sequence of natural numbers.The

value of a ◦ f at n ∈ N is often written as af(n).

31We are doing this slightly out of order with Abbott’s book. Instead of talking about subsequences (section

1.5), we are first going over Cauchy sequences (section 1.6) for motivation.
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a1 a2a3 a4
0.2 0.4 0.6 0.8 1.0

a1 a2a3 a4a5 a6 a7a8
0.2 0.4 0.6 0.8 1.0

a1 a2a3 a4a5 a6 a7a8 a9a10 a11 a12
0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

Figure 2: Visualizations of the first n elements in the sequence a for n = 4, 8, 12, 28, and 64, with

α =
√

2− 1 from Example 7.7.

Example 7.7. Fix α ∈ [0, 1] ∩ I. Let a : N→ R be the sequence defined by

N 3 n 7→ an := nα− bnαc. (7.8)

The first few elements of this sequence are depicted in Figure 2. On the one hand, this sequence

seems to be “filling up” the entire interval. On the other hand, the successive elements in the se-

quence jump around somewhat sporadically. An amazing fact about this sequence is the following:

“For any r ∈ [0, 1], there exists a subsequence b : N→ R of a such that lim b = r.” We won’t prove

this—for a proof, take a course in ergodic theory. If you think about it, it’s nuts! We will see a

similar example when we construct R from Q next week (you might see a similar example in your

homework!).

Remark 7.9. The previous example shows up in ergodic theory, which includes the study of

systems of large numbers of particles such as gasses and fluids. It is a simple example that

illustrates some features of ergodic systems.

Theorem 7.10. Subsequences of a convergent sequence converge to the same limit as the original

sequence.

Proof. See Abbott. �

Theorem 7.11. [Bolzano-Weierstrass Theorem] Every bounded sequence contains a convergent

subsequence.

Proof. Let a : N→ R be a sequence bounded by M. Thus, |an| ≤ M for all n ∈ N. Then at least

one of the intervals [−M, 0] and [0,M ] contains an infinite number of terms in the sequence a.
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Choose one of these intervals, denote it by I1, and let f1 : N → N be the non-decreasing 1-to-

1 function corresponding to the subsequence of a all of whose elements are contained in I1, i.e.

a ◦ f1 : N → R with (a ◦ f1)(N) ⊂ I1. Similarly, let I2 be an interval of length M
2

in I1 such that

one of the endpoints of I2 agrees with an endpoint of I1 and contains an infinite number of terms

in the sequence a ◦ f1. Let f2 : N → N be the non-decreasing 1-to-1 function corresponding to

this subsequence, a ◦ f1 ◦ f2. Inductively, let In be the closed interval of length M
2n+1 satisfying the

conditions

(a) one of the endpoints of In agrees with one of the endpoints of In−1 and

(b) In contains an infinite number of terms in the sequence a ◦ f1 ◦ · · · ◦ fn−1.

Let fn : N → N be the non-decreasing 1-to-1 function corresponding to the infinite subsequence

a ◦ f1 ◦ · · · ◦ fn−1 ◦ fn of a contained in In. Define a new sequence α : N→ R by

N 3 n 7→ α(n) :=
(
a ◦ f1 ◦ · · · ◦ fn−1 ◦ fn

)
(1) ≡ af1(···(fn−1(fn(1)))··· ). (7.12)

Then α is a subsequence of a. To show this sequence converges, note that

∞⋂
n=1

In 6= ∅ (7.13)

by the Nested Interval Property. In fact, since these intervals are such that there is only a single

element in this intersection,32 call it x. Let ε > 0 and choose N ∈ N such that

N > log2

(
M

ε

)
+ 1. (7.14)

Then, because

|αn − x| ≤
M

2n−1
since αn, x ∈ In

<
M

2log2(Mε )+1−1
∀ n ≥ N

= ε ∀ n ≥ N,

(7.15)

the sequence α converges to x. �

Lemma 7.16. Cauchy sequences are bounded.

The proof is similar to the proof that convergent sequences are bounded.

Proof. Let a : N → R be a Cauchy sequence and let ε > 0. By definition of a being a Cauchy

sequence, there exists an N ∈ N such that

|an − am| < ε ∀ n,m ≥ N. (7.17)

Let

S := max {|a1|, |a2|, . . . , |aN−1|, |aN |+ ε} . (7.18)

Then |an| ≤ S for all n ∈ N showing that a is bounded. �

32To prove this, suppose that x, y ∈
⋂∞
n=1 In with x 6= y and show that there is a contradiction.
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We can now prove the Cauchy Criterion.

Proof of Theorem 7.4. space

(⇒) If a sequence converges, it is Cauchy by Theorem 7.3.

(⇐) Let a : N → R be a Cauchy sequence. By Lemma 7.16, a is bounded. By the Bolzano-

Weierstrass Theorem (Theorem 7.11), there exists a convergent subsequence, a ◦ f, of a with

f : N→ N non-decreasing and 1-to-1. Denote the limit of this subsequence by

x := lim(a ◦ f). (7.19)

The claim is that x = lim a. To prove this, let ε > 0. Since a is a Cauchy sequence, there exists an

Na ∈ N such that

|an − am| <
ε

2
∀ n,m ≥ Na. (7.20)

Since α is a converging sequence, there exists an Nα ∈ N such that

|af(n) − x| <
ε

2
∀ n ≥ Nα. (7.21)

Let

N := max{Na, Nα}. (7.22)

Then, by the triangle inequality

|an − x| = |an + af(n) − af(n) − x|
≤ |an − af(n)|+ |af(n) − x|

<
ε

2
+
ε

2
∀ n ≥ N

= ε ∀ n ≥ N.

(7.23)

The third line follows from the fact that f(n) ≥ n. �

After this lecture, it is recommended the student works through problems 6 and 7 on HW #2.

Additional recommended exercises include exercises 2.5.2, 2.5.3, 2.5.9, 2.6.2, and 2.6.4 in [2] (I’ll

upload the corresponding exercise in [1] shortly).
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8 September 22

We can now discuss many aspects of series that have motivated our discussions of sequences. Some

of these facts follow [6].

Theorem 8.1. The series associated to the sequence

N 3 n 7→ 1

(n− 1)!
, (8.2)

where n! :=
∏n

k=1 k and 0! := 1, converges. This limit is denoted by

e :=
∞∑
n=0

1

n!
(8.3)

and is called Euler’s constant.

Proof. The partial sums S are given by

N 3 n 7→ S(n) :=
n∑
k=0

1

k!

= 1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+

1

1 · 2 · 3 · 4
+ · · ·+ 1

1 · 2 · · · · n
< 1 +

1

20
+

1

21
+

1

22
+

1

23
+ · · ·+ 1

2n−1

= 1 + 1 +
2n−1 − 1

(2− 1)2n−1

= 3− 1

2n−1

< 3

(8.4)

by Example 5.18, where we looked into the geometric series. Because S is bounded and increasing,

it converges by the Monotone Convergence Theorem (Theorem 6.17). �

Theorem 8.5 (Cauchy Criterion for Series). Let a : N → R be a sequence. The series
∑∞

n=1 an
converges if and only if for any ε > 0, there exists an N ∈ N such that

|am+1 + am+2 + · · ·+ an| < ε ∀ n,m ∈ N with n > m ≥ N. (8.6)

Proof. Let S : N → R be the associated sequence of partial sums of a. Then S converges if and

only if S is Cauchy by the Cauchy Criterion for sequences (Theorem 7.4). By definition, S is

Cauchy if and only if for any ε > 0, there exists an N ∈ N such that

|Sn − Sm| < ε ∀ n,m ≥ N. (8.7)

But the left-hand-side of this inequality is precisely

|Sn − Sm| = |am+1 + am+2 + · · ·+ an| < ε ∀ n,m ∈ N with n > m ≥ N, (8.8)

supposing, without loss of generality, that n > m. �

33



Theorem 8.9 (Absolute Convergence Test). Let a : N→ R be a sequence. If the series
∑∞

n=1 |an|
converges, then the series

∑∞
n=1 an converges.

Proof. By the Cauchy Criterion for Series (Theorem 8.5),
∑∞

n=1 |an| converges if and only if for

any ε > 0, there exists an N ∈ N such that∣∣∣|am+1|+ |am+2|+ · · ·+ |an|
∣∣∣ < ε ∀ n,m ∈ N with n > m ≥ N. (8.10)

But the left-hand-side of this inequality satisfies

|am+1 + am+2 + · · ·+ an| ≤ |am+1|+ |am+2|+ · · ·+ |an|

=
∣∣∣|am+1|+ |am+2|+ · · ·+ |an|

∣∣∣
< ε ∀ n,m ∈ N with n > m ≥ N

(8.11)

by the triangle inequality. Again, by the Cauchy Criterion for Series,
∑∞

n=1 an converges. �

This theorem motivates the following definition.

Definition 8.12. Let a : N→ R be a sequence. The associated series
∑∞

n=1 an converges absolutely

if the series
∑∞

n=1 |an| converges. The series
∑∞

n=1 an converges conditionally if the series
∑∞

n=1 |an|
diverges but

∑∞
n=1 an converges.

Theorem 8.13. Let a : N → R be a sequence. If the series
∑∞

n=1 an associated to a converges,

then lim a = 0.

Proof. By the Cauchy Criterion for Series (Theorem 8.5), for any ε > 0, there exists an N ∈ N
such that

|am+1 + am+2 + · · ·+ an| < ε ∀ n,m ∈ N with n > m ≥ N. (8.14)

In particular, when n := m+ 1, this implies

|am+1| < ε ∀ m ≥ N (8.15)

so that lim a = 0. �

The converse of this statement is not true! We will give an example later. However, the

converse is true if an additional sufficient condition holds.

Theorem 8.16 (Alternating Series Test). Let a : N → R be a non-increasing sequence with

lim a = 0. Then the series
∞∑
n=1

(−1)nan (8.17)

converges.

Proof. Exercise 2.7.1 in [2] asks the reader to supply three different proofs of this theorem. You

should try to produce them all! �

Definition 8.18. Let a : N → R be a sequence. A rearrangement of a is a sequence of the form

a ◦ f with f : N→ N a bijection.
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Warning: If f : N→ N is a bijection and a : N→ R converges, this does not mean that a ◦ f
converges! In fact, you may have guessed this by the examples provided in Section 2.1 of Abbott’s

book. This is particularly relevant for series associated to a whose partial sums are given by

N 3 n 7→ S(n) :=
n∑
k=1

ak. (8.19)

The partial sums associated to a ◦ f are given instead by

N 3 n 7→ S ′(n) :=
n∑
k=1

af(k). (8.20)

Example 8.21. Let a : N→ R be the sequence given by

N 3 n 7→ an :=
(−1)n+1

n
(8.22)

and let S be the associated sequence of partial sums. By the Alternating Series Test (Theorem

8.16), S converges. In fact, it converges to ln 2 where ln := loge and e is Euler’s constant defined

earlier in this lecture. Let S denote the sequence of partial sums of the sequence a. Let f : N→ N
be the function defined by

N 3 n f7−→

{
n+

⌊
n
2

⌋
if n odd

n−
⌊
n
4

⌋
if n even

(8.23)

For the first few natural numbers, this looks like

1_

��

2_

��

3 }

��

4A

��

5 �

''

6A

��

7 �

**

80

ww

9 10/

ww

· · ·

1 2 3 4 5 6 7 8 9 10 · · ·

(8.24)

Then, the partial sums associated to the sequence a ◦ f are given by

N 3 m 7→
m∑
n=1

af(n) =
m∑

n odd

an+bn2 c +
m∑

n even

an−bn4 c (8.25)

The first few terms of this rearranged series are

1− 1

2︸ ︷︷ ︸
1
2

−1

4
+

1

3
− 1

6︸ ︷︷ ︸
1
6

−1

8
+

1

5
− 1

10︸ ︷︷ ︸
1
10

− 1

12
+

1

7
+ · · · = 1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

∞∑
n=1

(−1)n+1

n

(8.26)

This shows that upon a particular rearrangement, the value of the series was halved!

Theorem 8.27. If the series associated to a sequence converges absolutely, then any rearrangement

of the sequence gives an associated series that converges to the same limit.
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In other words, the “sum” in an absolutely convergent series is commutative.

Proof. See Abbott. �

Just as there was an Algebraic Limit Theorem for Sequences, there is one for series. However,

there are subtleties for the products of two series. Let a, b : N → R be two sequences with

associated partial sums S and T, respectively. Then the product of the partial sums S and T is

given by the product of the associated partial sums, namely

N 3 n 7→ (ST )n ≡ SnTn :=

(
n∑
i=1

ai

)(
n∑
j=1

bj

)
=

n∑
i=1

n∑
j=1

aibj. (8.28)

Theorem 8.29 (Algebraic Limit Theorem for Series). Let a and b be two sequences with associated

convergent series A :=
∑∞

n=1 an and B :=
∑∞

n=1 bn. Then the following hold.

(a)
∑∞

n=1 can = cA for all c ∈ R.

(b)
∑∞

n=1(an + bn) = A+B.

(c) If either of the series
∑∞

n=1 an or
∑∞

n=1 bn converge absolutely, then

lim
n→∞

(
n∑
i=1

n∑
j=1

aibj

)
= AB = lim

n→∞

(
n∑
k=1

akbn−k

)
. (8.30)

Proof. The first two are immediate consequences of the algebraic limit theorem for sequences. The

last one is non-trivial. A lengthy proof of the first equality is given in Abbott while a shorter proof

of the second equality is given by [6]. �

After this lecture, it is recommended the student works through problems 8 and 9 on HW #2.

Additional recommended exercises include exercises 2.7.1 (I highly recommend this one!), 2.7.2,

2.7.4, and 2.7.8 in [2] (I’ll upload the corresponding exercise in [1] shortly).

36



9 September 27

Today we will construct R from Q in groups. The following are my notes on this construction. I

will also make available the work of the students once ready.
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10 September 29

The next few lectures will focus on topological concepts from R. There are many (equivalent) ways

to present this material. The definitions of what it means to be open, closed, and so on may differ

from reference to reference. Nevertheless, most definitions are all equivalent. My presentation

prefers to choose the definition to be something satisfying a particular condition and then proving

that there is a construction for those things. This only slightly differs from the presentation in

Abbott’s book.

Definition 10.1. Let a ∈ R and ε > 0. The ε-neighborhood of a is the set33

Vε(a) := {x ∈ R : |x− a| < ε} ≡ (a− ε, a+ ε). (10.2)

Definition 10.3. A subset A ⊆ R is open if for every a ∈ A, there exists an ε > 0 such that

Vε(a) ⊆ A.

Example 10.4. Q is not an open subset of R. To see this, let r ∈ Q and fix ε > 0. Then

Vε(r) = (r− ε, r+ ε) and by the density of I in R (Theorem 4.2), there exists an irrational number

s ∈ (r, ε). Therefore, Vε(r) * Q. Since this happens for every ε > 0, Q is not open.

Theorem 10.5. space

(a) R and ∅ are open subsets of R.

(b) The union of an arbitrary collection of open sets is open.

(c) The intersection of a finite collection of open sets is open.

Proof. space

(a) Let a ∈ R and ε > 0. Then (a − ε, a + ε) ⊆ R showing that R is open. ∅ is open vacuously

since there is no element in ∅ so that the required condition automatically holds.

(b) Let Λ be a set and {Uλ}λ∈Λ a collection of open sets in R indexed by Λ. Let a ∈
⋃
λ∈Λ Uλ. By

definition of the union, a ∈ Uλ for some λ ∈ Λ. Since Uλ is open, there exists an ε > 0 such

that Vε(a) ⊆ Uλ. Then Vε(a) ⊆
⋃
λ∈Λ Uλ.

(c) Let {U1, . . . , Un} be a finite collection of open sets in R. Let a ∈
⋂∞
i=1 Ui. Then, by definition

of intersection, a ∈ Ui for all i ∈ {1, . . . , n}. Hence, since each Ui is open, there exists an εi > 0

such that Vεi(a) ⊆ Ui. Set ε := min{ε1, . . . , εn}. Then Vε(a) ⊆
⋂n
i=1 Ui because Vε(a) ⊆ Ui for

all i ∈ {1, . . . , n}.

�

33The definition of an ε-neighborhood seems a little useless at this point because it turns out the just be an open

interval. These definitions become a little more useful in higher dimensional Euclidean spaces, abstract manifolds,

and even more general spaces, where the notion of an interval is no longer available, but an ε-neighborhood still

makes sense.
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This theorem is the foundations for the study of topology, the subject that studies spaces

deformable under continuous transformations. Because it is so important, and closely related to

this theorem, we provide the definition.

Definition 10.6. Let X be a set. A topology on X is a subset τ ⊆ P(X) of the power set of X

satisfying the following conditions.

(a) X,∅ ∈ τ.

(b) For any collection of sets U : Λ→ τ with Uλ := U(λ),
⋃
λ∈Λ Uλ ∈ τ.

(c) For any finite collection of sets {U1, . . . , Un} with Ui ∈ τ for all i = 1, . . . , n,
⋂n
i=1 Ui ∈ τ.

It took many years to come up with the above definition as a robust enough approach for a

study of continuity.

Definition 10.7. Let A ⊆ R be a set and τR the set of open sets in R. An open cover of A is a

collection of open sets U : Λ→ τR such that

A ⊆
⋃
λ∈Λ

Uλ. (10.8)

Theorem 10.5 and Definition 10.7 have interesting consequences. Even though we know that

Q is not an open set, we can still cover it by open sets. A naive guess would think that every open

cover of Q would contain every irrational number since the rational numbers are spread throughout

all of R in such a way that between any two irrationals is a rational. Nevertheless, this turns out

to be false.

Example 10.9. Let ϕ : N → Q be an enumeration of the rationals. Fix p > 1 and consider the

sequence of open intervals given by

N 3 n 7→ Jn :=

(
ϕ(n)− 1

2pn
, ϕ(n) +

1

2pn

)
. (10.10)

Then the set of all {Jn}n∈N form an open cover of Q,

Q ⊆
∞⋃
n=1

Jn. (10.11)

In particular,
⋃∞
n=1 Jn is an open set by Theorem 10.5 and it contains Q. Even more surprisingly,

the length (a.k.a. measure) of
⋃∞
n=1 Jn is finite and bounded from above by34

∞∑
n=1

1

pn
=

1

p− 1
. (10.12)

Although closed sets in R are usually thought of as closed intervals, the latter are just a special

case of the former. Closed sets are sets which contain limits of sequences, whenever they exist,

that are contained in them.
34It is bounded from above by this value because any two of these open sets might intersect, and this sum

overcounts the length due to the overlaps.
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Definition 10.13. Let A ⊆ R. A point x ∈ R is a limit point of A if for any ε > 0,

Vε(x) ∩ (A \ {x}) 6= ∅. (10.14)

A point a ∈ A is an isolated point of A if it is not a limit point of A.

Example 10.15. Let a : N→ R be a convergent sequence with limit lim a /∈ A, where A := a(N)

is the image of the sequence a as a subset of R. Then lim a is the only limit point of A, i.e. lim a

is a limit point of A and an is an isolated point of A for all n ∈ N.
To see the first claim, note that by definition of lim a, for any ε > 0, there exists an N ∈ N

such that

|an − lim a| < ε ∀ n ≥ N. (10.16)

In other words, an ∈ Vε(lim a) for all n ≥ N. Since an 6= lim a for all n ∈ N, this shows that lim a

is a limit point of a(N).

To see that an is an isolated point35 of a(N) for any n ∈ N, let

εn :=
|an − lim a|

2
. (10.17)

Note that εn > 0 since an 6= lim a by assumption. Since a converges to lim a, there exists an M ∈ N
such that

|am − lim a| < εn ∀ m ≥M. (10.18)

Let

K :=
{
k ∈ {1, . . . ,M − 1} | ak 6= an

}
. (10.19)

Since ak 6= an for all k ∈ K, set

εk := |ak − an|. (10.20)

Finally, set

ε := min
(
{εk | k ∈ K} ∪ {εn}

)
. (10.21)

Then Vε(an) contains an but

Vε(an) ∩
(
A \ {an}

)
= ∅. (10.22)

A picture for this proof is given by the following

•
a1

•
a2

•
am

•
an

•
ak

•
lim a

︸ ︷︷ ︸
2εn=|an−lim a|

2εk=|ak−an|︷ ︸︸ ︷
︸ ︷︷ ︸

2εn=|an−lim a|

Definition 10.23. A set A ⊆ R is closed if it contains its limit points.

35Kevin Pratt pointed out another (simpler) proof of this fact. Suppose, to the contrary, that an is a limit point

of a. Then, for all ε > 0, there exists an N ∈ N such that aN ∈ Vε(an) \ {an}, i.e. Vε(an) ∩ a(N) \ {an} 6= ∅.
Setting εm := 1

m for each m ∈ N, this shows there exists a subsequence a ◦ f of a, with f : N → N one-to-one

and nondecreasing, such that lim(a ◦ f) = an. But since every subsequence of a must converge to lim a since a is

convergent by Theorem 7.10, this contradicts that an 6= lim a.
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Theorem 10.24. Let A ⊆ R. A point x ∈ R is a limit point of A if and only if there exists a

sequence a : N→ A \ {x} with lim a = x.

Proof. space

(⇒) Let x be a limit point of A and let ε : N→ R be the sequence

N 3 n 7→ εn :=
1

n
. (10.25)

Since x is a limit point of A, there exists an an ∈ Vεn(x), with an 6= x, for all n ∈ N. Then the

associated sequence a : N→ R has lim a = x because for every εx > 0, there exists an Nx >
1
εx

by

the Archimedean Property of R so that

|an − x| <
1

n
≤ 1

Nx

< εx ∀ n ≥ Nx. (10.26)

(⇐) This direction was essentially proved in Example 10.15. More precisely, let a be such a

sequence. Then that example showed that lim a is a limit point of a(N), but since a(N) ⊆ A, lim a

is also a limit point of A. �

This result has many useful applications.

Example 10.27. Every point of Q is a limit point of Q, but Q is not closed, i.e. Q has limit points

that are not contained in Q. The first statement follows from the Density of Q in R. The second

statement follows from the previous lecture and the fact that every real number is expressed as a

Cauchy sequence of rational numbers. In other words, every irrational number is also a limit point

of Q.

Theorem 10.28. A set A ⊆ R is closed if and only if for every Cauchy sequence a : N → A,

lim a ∈ A.

Proof. This is one of your homework problems. �

Theorem 10.29. A set A ⊆ R is open if and only if Ac ≡ R \ A is closed.

Proof. space

(⇒) Let A be open and let x be a limit point of Ac. Suppose to the contrary that x ∈ A. Then,

since A is open, there exists an ε > 0 such that Vε(x) ⊆ A. In particular Vε(x) ∩ Ac = ∅. This

contradicts that x is a limit point of Ac. Therefore, x ∈ Ac.
(⇐) Let Ac be closed and let y ∈ A. Since Ac is closed, y is not a limit point of Ac. Therefore,

there exists an ε > 0 such that Vε(y)∩Ac = ∅. By definition of complement and intersection, this

means Vε(y) ⊆ A showing that A is open. �

Corollary 10.30. A set is closed if and only if its complement is open.

Proof. Since taking the complement is an involution (an operation that squares to the identity),

this follows from Theorem 10.29. �

Theorem 10.31. space
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(a) ∅ and R are closed subsets of R.

(b) The union of a finite collection of closed sets is closed.

(c) The intersection of an arbitrary collection of closed sets is closed.

Proof. This follows from Theorem 10.29 and DeMorgan’s laws. See exercise 3.2.9 in [2]. �

Definition 10.32. Let A ⊆ R. The closure of A, is a closed subset, A, of R satisfying

(a) A ⊆ A and

(b) for any other closed subset B ⊆ R with A ⊆ B, A ⊆ B.

The definition of closure of a set should remind you of the definition of the supremum of a

bounded set. An explicit construction of A is given by the following fact.

Theorem 10.33. Let A ⊆ R. Then

A = A ∪ LA, (10.34)

where LA is the set of limit points of A. In addition,

A =
⋂
B

B (10.35)

where the intersection is over all closed sets containing A. In particular, A is closed if and only if

A = A.

Proof. Exercise. �

Exercise 10.36. Prove that Q = R.

After this lecture, it is recommended the student works through problems 2, 3, and 4 on HW

#3. Additional recommended exercises include exercises 3.2.1, 3.2.2, 3.2.7, 3.2.8, 3.2.9, 3.2.11, and

3.2.14 in [2] (I’ll upload the corresponding exercise in [1] shortly).
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11 October 4

Definition 11.1. A subset K ⊆ R is compact if every sequence in K has a subsequence converging

to a point in K.

Example 11.2. Let A be a finite subset of R and let a : N→ A be a sequence in A. Because A is

finite, at least one of the elements, say x, of A will appear infinitely many times in the sequence

a. Thus, the subsequence of a given by N 3 n 7→ x converges to x, which is in A.

Example 11.3. Every closed interval [a, b], with a ≤ b, is compact.

Theorem 11.4. Let

K1 ⊇ K2 ⊇ K3 ⊇ K4 ⊇ · · · (11.5)

be a nested sequence of nonempty compact subsets of R. Then

∞⋂
n=1

Kn 6= ∅. (11.6)

This theorem should be compared to the nested interval property. If “compact” is replaced

by “closed” above, the statement is false. A counter-example is given by the collection of closed

unbounded intervals [n,∞) for each n ∈ N.

Proof. Because each Kn is non-empty, let an ∈ Kn. Let a : N → K1 be the sequence defined by

N 3 n 7→ an. Since K1 is compact, there exists a one-to-one non-decreasing function f : N→ N so

that a◦f : N→ K1 is a convergent subsequence of a with limit lim(a◦f) ∈ K1. Because f : N→ N
is non-decreasing and one-to-one, af(n) ∈ Kf(n) ⊆ Kn for all n ∈ N. Therefore, for every N ∈ N,
let ϕN : N→ N be the function defined by ϕN(n) := N + n. Then a ◦ f ◦ ϕN is a subsequence of

a ◦ f contained in KN . Since a ◦ f converges, a ◦ f ◦ ϕN converges to the same limit by Theorem

7.10. Since KN is compact, lim(a ◦ f ◦ ϕN) ∈ KN . This shows that lim(a ◦ f) ∈ KN for all N ∈ N
showing that lim(a ◦ f) ∈

⋂∞
i=1Ki. �

A “picture” for this proof is

K1 ⊇ K2 ⊇ K3 ⊇ K4 ⊇ K5 ⊇ K6 ⊇ K7 ⊇ K8 ⊇ K9 ⊇ K10 ⊇ K11 ⊇ K12 ⊇ · · ·

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 · · ·∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

af(1) af(2) af(3) af(4) af(5) af(6) af(7)

∈ ∈ ∈ ∈ ∈ ∈ ∈

(11.7)

The reason for the shift ϕN is so that the sequence is completely contained in KN .

Lemma 11.8. Compact subsets of R are closed.

Proof. Let K be compact and let x : N → K be a convergent sequence in K. By Theorem 7.10,

every subsequence of x is convergent and converges to the same limit. Because K is compact, this

limit is in K, i.e. limx ∈ K. Therefore, K is closed. �

Lemma 11.9. The intersection of an arbitrary collection of compact sets is compact.
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Proof. Let Λ be a set, {Kλ}λ∈Λ such a collection, and

a : N→
⋂
λ∈Λ

Kλ (11.10)

a sequence in the intersection. Fix λ0 ∈ Λ. Since Kλ0 is compact, there exist convergent subse-

quence a ◦ f : N → Kλ0 (f : N → N is one-to-one and non-decreasing) with lim(a ◦ f) ∈ Kλ0 .

Because a lands in the intersection of all these compact sets, this subsequence lands in the inter-

section as well, namely

(a ◦ f)(N) ⊆
⋂
λ∈Λ

Kλ. (11.11)

Since every compact set is closed by Lemma 11.8 and since an arbitrary intersection of closed sets

is closed by Theorem 10.31,

lim(a ◦ f) ∈
⋂
λ∈Λ

Kλ. (11.12)

Thus, a ◦ f is a convergent subsequence of a : N→
⋂
λ∈ΛKλ whose limit is in

⋂
λ∈ΛKλ. �

Definition 11.13. Let A ⊆ R, τR the set of open sets in R, and U : Λ→ τR an open cover of A.

A subcover of U : Λ → τR is an open cover of A of the form U ◦ i : Ω → τR, where Ω ⊆ Λ and

i : Ω ↪→ Λ is the inclusion. If Ω is a finite, then the subcover is said to be a finite subcover.

Theorem 11.14 (Heine-Borel Theorem). Let K ⊂ R. The following statements are equivalent.

(a) Every open cover of K has a finite subcover.

(b) K is closed and bounded.

(c) K is compact.

Proof. In this proof, we will show the following sequence of implications (a)⇒(b)⇒(c)⇒(a). In

the process of proving (c)⇒(a), we actually prove (c)⇒(b) so we include that separately as well.

(a)⇒(b) Let ε := 1. The collection

U := {Vε(x) | x ∈ K} (11.15)

of ε-neighborhoods around all points in K is an open cover of K. By assumption, there exists a

finite subset {x1, . . . , xn} ⊂ K such that

K ⊆
n⋃
i=1

Vε(xi). (11.16)

Thus, K is bounded, for instance by

max
i
{|xi + ε|, |xi − ε|}. (11.17)

Instead of proving that K is closed directly, we prove the contrapositive. Namely, we prove that

K is not closed implies there exists an open cover of K that does not have a finite subcover. Let
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x be a limit point of K that is not contained in K. Set ε0 := 1. Since x is a limit point of K, there

exists an x1 ∈ K ∩ Vε0(x). Recursively, set

εn :=
|x− xn|

2
, (11.18)

where xn ∈ K ∩ Vεn−1(x). xn always exists because εn−1 > 0 for all n ∈ N and x is a limit point of

K. Then, for each n ∈ N, define

Un := Vεn−1(x)
c
≡ (−∞, x− εn−1) ∪ (x+ εn−1,∞). (11.19)

This is an open set for each n ∈ N by Theorem 10.29. Furthermore, by construction, xn ∈ K ∩Un
for all n ∈ N and each xn is distinct. In other words, {Un}n∈N is a countably infinite open cover

of K that does not have a finite subcover containing K.

(b)⇒(c) Suppose K is closed and bounded and let a : N → K be a sequence in K. Because K

is bounded, the Bolzano-Weierstrass Theorem (Theorem 7.11) implies there exists a convergent

subsequence a ◦ f : N→ K with f : N→ N one-to-one and non-decreasing. Because K is closed,

Theorem 10.28 guarantees that lim(a ◦ f) ∈ K.
(c)⇒(b) Let K be compact. K is closed by Lemma 11.8. To see that K must be bounded as well,

we will prove the contrapositive, namely K not bounded implies there exists a sequence a : N→ K

with no convergent subsequence. For each n ∈ N, define

K0 := K & Kn := K ∩ (−n, n)c. (11.20)

By assumption, Kn is nonempty for all n ∈ N. Thus, for each n ∈ N, let an ∈ Kn. Then a : N→ R,
defined by N 3 n 7→ an, is a divergent sequence in K containing no convergent subsequence.

(c)⇒(a) Let K be compact. By the previous paragraph, K is bounded and closed. Let M ∈ R
be such a bound for K, i.e. K ⊆ [−M,M ]. Now, let {Uλ}λ∈Λ be an open cover of K. Suppose,

to the contrary, that {Uλ}λ∈Λ does not contain a finite subcover of K. Set I0 := [−M,M ]. By

assumption, it must be that at least one of the two sets [−M, 0] ∩ K or [0,M ] ∩ K cannot be

covered by a finite subcover of {Uλ}λ∈Λ (if both of them could be, then taking the union of the two

finite subcovers would give a finite subcover of K). Let I1 be one such choice of [−M, 0] or [0,M ].

Define In inductively in this way. Namely, suppose In := [an, bn] with an, bn ∈ R and an < bn and

no finite subcover of {Uλ}λ∈Λ covers In ∩K. At least one of the two intervals[
an, bn −

1

2n

]
or

[
an +

1

2n
, bn

]
(11.21)

satisfies the condition that there does not exist a finite subcover of {Uλ}λ∈Λ covering its intersection

with K. Choose one and set In+1 ≡ [an+1, bn+1] to be this choice. This gives collection of sets

Kn := In ∩K (11.22)

that are compact by Lemma 11.9. Furthermore, this gives a nested sequence of compact sets

K1 ⊇ K2 ⊇ K3 ⊇ K4 ⊇ · · · . (11.23)
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By Theorem 11.4,
∞⋂
n=1

Kn 6= ∅. (11.24)

Because these intervals are decreasing in length to zero as n increases,
⋂∞
n=1Kn consists of only a

single point; call this point x. Because x ∈ K, there exists a λx ∈ Λ such that x ∈ Uλx . Because

Uλx is open, there exists an ε > 0 such that Vε(x) ⊆ Uλx . Since lim
n→∞

an = x = lim
n→∞

bn, there exists

an N ∈ N such that an, bn ∈ Vε(x) for all n ≥ N. In particular, In ⊆ Vε(x) ⊆ Uλx for all n ≥ N.

This contradicts that there is a finite subcover of In for n ≥ N. �

Remark 11.25. This theorem is of significant importance. You might run across sequences in

spaces that do not have a notion of distance. Being bounded and convergence of sequences both

use such a notion of distance. However, in a more abstract setting where one might not have a

natural notion of distance (or in instances where one can make statements independent of such a

notion), item (a) can be used as a definition of compactness.

Remark 11.26. Part of the proof of the Heine-Borel theorem illustrates the connection between

the definition of a subset of R being compact that we gave and the equivalent concept of that

subset being closed and bounded in R. A subset K ⊆ R is compact if and only if either of the two

columns are true (and the horizontal conditions are equivalent for any subset K of R)

Every sequence in K contains a Cauchy subsequence

The limit of every Cauchy sequence in K is in K

ks Bolzano-Weirestrass +3

ks
Definition of K closed

+3
K is bounded

K is closed

After this lecture, it is recommended the student works through problem 5 on HW #3. Ad-

ditional recommended exercises include 3.3.8., 3.3.10, and 3.3.12 from [2] (I’ll upload the corre-

sponding exercise in [1] shortly).
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12 October 6

Unfortunately, I have to throw some definitions at you. I’m not entirely sure how much of these

are necessary for what we will do in this course. I know connectedness will be crucial for functions

and continuity. I also know the dense subsets show up a lot in many areas of mathematics (also

see Remark 12.12). I’ve personally never used the fact that a set was perfect or nowhere dense to

prove anything, but who knows what will happen in the future.

Definition 12.1. A subset P ⊆ R is perfect if it is closed and contains no isolated points.

Example 12.2. All closed intervals and unbounded closed intervals are perfect.

Example 12.3 (The Cantor Set). Define Cn to be the subset of [0, 1] depicted in the following

figure.

C0

C1

C2

C3

• •

• • • •

• • • • • • • •

• • • • • • • • • • • • • • • •
...

...
...

...
...

...
...

...

The Cantor set is the intersection of all these sets

C :=
∞⋂
n=1

Cn. (12.4)

Proposition 12.5. The Cantor set is perfect.

Proof. To see this, first notice that it is closed because it is the intersection of closed sets (see

Theorem 10.31). Now let x ∈ C and fix ε > 0. Then, there exists an n ∈ N such that 3−n < ε.

Because x ∈ C, x ∈ Cn. In particular, x is contained in some interval [a, b] ⊆ Cn.

a bx

3−n︷ ︸︸ ︷
︸ ︷︷ ︸

2ε

•• •

Because n was chosen to satisfy 3−n < ε, it follows that a, b ∈ Vε(x). Since the endpoints of any

interval in Cn is in C, this proves Vε(x) ∩ C \ {x} 6= ∅ showing that x ∈ C is not isolated. �

Corollary 12.6. The Cantor set is compact.
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Proof. This follows immediately from the fact that perfect implies closed and since C ⊆ [0, 1], it

is bounded and therefore compact by the Heine-Borel Theorem (Theorem 11.14). �

Exercise 12.7. Prove that the Cantor set is compact explicitly (straight from the definitions)

without referring to the Heine-Borel Theorem or Lemma 11.9.

Theorem 12.8. A nonempty perfect set is uncountable.

Proof. See Abbott. �

Definition 12.9. Two nonempty subsets A,B ⊆ R are said to be separated if A ∩ B and A ∩ B
are both empty. A subset E ⊆ R is disconnected if there exist separated subsets A,B ⊆ E with

E = A ∪B. A set E is connected if it is not disconnected.

Theorem 12.10. A subset E ⊆ R is connected if and only if for any a, b ∈ E with a < b implies

(a, b) ⊆ E.

Proof. See Abbott. �

We may take this theorem as the definition of connectedness in this course. However, please

be aware that the more general definition is more relevant in higher dimensions.

Definition 12.11. A subset G ⊆ R is dense if for any open subset U ⊆ R, G ∩ U 6= ∅.

Remark 12.12. Density is a very useful concept. We will use this time and time again when we

begin discussing functions and convergence of functions. Often, we will be able to prove theorems

about dense subsets. We will then use density to extend the result to larger classes of functions.

Example 12.13. Q is a dense subset of R.

Theorem 12.14. A subset G ⊆ R is dense if and only if G = R.

Proof. space

(⇒) Let G be dense and let x ∈ R. Since G is dense, for every ε > 0, Vε(x) ∩ G \ {x} 6= ∅. By

definition and since Vε(x) is open, this means x is a limit point of G. Thus, x ∈ G.
(⇐) The proof will be by contrapositive. Suppose G is not dense. Then there exists an open set

U ⊆ R such that G∩U = ∅. Let x ∈ U. Since U is open, there exists an ε > 0 such that Vε(x) ⊆ U.

Then U c is a closed set (by Theorem 10.29) containing G. Hence G ⊆ U c. Since x /∈ U c, x /∈ G
and so G 6= R. �

To understand all of these different topological definitions, it helps to keep a table of several

examples. The following table provides some. In this table, C is the Cantor set, a < b (strict

inequality), and ∅ is the empty set. It a property holds, T is written. If a property does not hold,

F is written.
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open closed bounded perfect compact dense connected

R T T F T F T T

I F F F F F T F

Q F F F F F T F

Z F T F F F F F

(a, b) T F T F F F T

[a, b] F T T T T F T

[a, b) F F T F F F T

[a,∞) F T F T F F T

C F T T T T F F

∅ T T T T T F T

{0} F T T F T F T

{ 1
n
| n ∈ N} F F T F F F F

{0} ∪ { 1
n
| n ∈ N} F T T F T F F

Exercise 12.15. Verify the table. Try to prove each and every claim.

Definition 12.16. A subset E ⊆ R is nowhere dense if E contains no nonempty open sets.

Theorem 12.17 (Baire’s Theorem). R is not a countable union of nowhere-dense sets.

Abbott has a nice discussion at the end of chapter 3 regarding Baire’s theorem and its signifi-

cance. Please read it to somewhat appreciate this result a bit more.

After this lecture, it is recommended the student works through problems 6, 7, and 8 on HW

#3. Additional recommended exercises include 3.4.2, 3.4.5, 3.4.6, 3.4.9, 3.5.8, 3.5.9, and 3.5.10

from [2] (I’ll upload the corresponding exercise in [1] shortly).
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13 October 11

Today we finish up what I didn’t finish up from the rest of chapter 3.
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14 October 13

Today we will review chapters 1 through 3 by going through a practice exam and any other related

problems.
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15 October 18

Today is the exam. Good luck!
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16 October 20

Finally, functions! Please read Abbott for motivation. One of the points about Abbott’s discussion

is that what we might think of as being a generic function, which is often smooth, is far from

generic in the technical math sense. In fact, in the set of all functions of a real variable, most of

the functions aren’t smooth—in fact, most of them aren’t even continuous! This is a result of the

definition of function as it was carved over many years.

Definition 16.1. Let A ⊆ R and let f : A → R. Let c be a limit point of A. L is said to be a

limit of f as x approaches c, written

lim
x→c

f(x) = L, (16.2)

if for any ε > 0, there exists a δ > 0 such that f(x) ∈ Vε(L) for all x ∈ Vδ(c) ∩A \ {c}. L is called

a functional limit of f as x approaches c.

Please note that if c is actually an element of A, a limit of f as x approaches c is completely

independent of the value of f at c. Also note that a limit itself need not exist (the proof of the

next theorem will illustrate what this negation means explicitly). Another way of phrasing this

definition is: “L is a limit of f as x approaches c if for any ε > 0, there exists a δ > 0 such that

x ∈ Vδ(c) ∩ A \ {c} implies f(x) ∈ Vε(L).” A picture for this definition is

[ ]•
c
•
x︸ ︷︷ ︸

2δ

•

[

[

L

︸︷︷︸2
ε ••f(x)

Lemma 16.3. Let A ⊆ R, let f : A → R, and let c be a limit point of A. If L and L′ are both

limits of f as x approaches c, then L = L′, i.e. functional limits are unique.

Proof. Suppose that L and L′ are both functional limits of f as x approaches c and suppose to

the contrary that L 6= L′. Without loss of generality, suppose L < L′. Then, by density of real

numbers, there exists an ε > 0 such that L + 2ε < L′. By assumption, there exists a δ > 0 such

that |L− f(x)| < ε and |L′ − f(x)| < ε for all x ∈ Vδ(c)∩A \ {c}. However, these two inequalities

cannot hold simultaneously, which leads to a contradiction. �

The textbook illustrates a few examples of functions that have functional limits at certain limit

points in their domain.
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Example 16.4. Let e : R → R be the exponential function (sometimes denoted by exp to avoid

confusion with the number e) defined by36

R 3 x 7→ e(x) ≡ ex :=
∞∑
n=0

xn

n!
, (16.5)

which we (essentially) proved converges several lectures ago. Let c ∈ R and let L := ec. Fix

ε > 0 and consider the ε-neighborhood around L (depicted as a vertical blue solid interval in the

following figure).

x

ex

−2 −1 1 2

1

3

6

9

12

•
c

•L

To find an appropriate δ, consider the expression |ex − L| < ε. When x > c = ln(L), this becomes

ex − L < ε and solving for x gives ln(L) < x < ln(ε + L). When x < c = ln(L), the inequality

becomes L− ex < ε, which upon solving for x gives ln(L− ε) < x < ln(L). Thus, we should choose

δ := min
{

ln(ε+ L)− ln(L), ln(L)− ln(L− ε)
}

(16.6)

motivated by a zoomed in graph of this function

x

ex

1 2

ln( L
L−ε)︷ ︸︸ ︷ ln(L+ε

L )︷ ︸︸ ︷

•
c

•

The smaller of these two values is the first (as can also be seen from the figure above). Hence, set

δ := ln(ε+ L)− ln(L). Then for x ∈ (c− δ, c),

|ex − L| = L− ex < L− ec−δ = L(1− e−δ) = L

(
1− L

ε+ L

)
= L

(
ε

ε+ L

)
< L

( ε
L

)
= ε. (16.7)

36Actually, we defined e in an earlier lecture. We also defined what it means to raise an arbitrary real number

to a real power. Hence, ex can also be defined in this (apriori different) manner.
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Similarly, for x ∈ (c, c+ δ),

|ex − L| = ex − L < ec+δ − L = L(eδ − 1) = L

(
ε+ L

L
− 1

)
= L

(
ε

ε+ L

)
< L

( ε
L

)
= ε. (16.8)

Theorem 16.9. Let A ⊆ R, let f : A→ R, and let c be a limit point of A. Then lim
x→c

f(x) = L if

and only if for for every sequence a : N→ A \ {c} with lim a = c, it follows that lim(f ◦ a) = L.

Keep in mind that there are two different usages of the symbol lim in this theorem. This

theorem relates the two.

Proof. space

(⇒) Suppose lim
x→c

f(x) = L and let a : N → A \ {c} be a sequence with lim a = c. Fix ε > 0.

Then, by assumption, there exists a δ > 0 such that |f(x) − L| < ε for all x ∈ A \ {c} satisfying

|x− c| < δ. But since lim a = c, there exists an integer N ∈ N such that |an− c| < δ for all n ≥ N.

This implies |f(an)− L| < ε for all n ≥ N proving that lim(f ◦ a) = L.

(⇐) The proof will be by contrapositive. In other words, suppose lim
x→c

f(x) 6= L. This means that

there exists an ε > 0 so that for all δ > 0, there exists an x ∈ Vδ(c) ∩ A \ {c} with f(x) /∈ Vε(L).

In particular, for each n ∈ N, set δn := 1
n
. Then there exists an an ∈ Vδn(c) ∩ A \ {c} with

f(an) /∈ Vε(L). Since lim
n→∞

δn = 0, the sequence a : N→ A \ {c} converges to c. Furthermore, since

f(an) /∈ Vε(L), the sequence n 7→ f(an) does not converge to L. �

The following result is useful whenever one wants to show that a functional limit does not exist.

Corollary 16.10. Let A ⊆ R, let f : A → R, and let c be a limit point of A. If there exist two

distinct sequences a, b : N→ A \ {c} such that lim a = c and lim b = c but lim(f ◦ a) 6= lim(f ◦ b),
then the limit of f as x approaches c does not exist.

Proof. Exercise. �

Example 16.11. A simple example illustrating this fact is the function

R 3 x 7→ h(x) :=


−1 for x < 0

0 for x = 0

1 for x > 0

(16.12)

and the sequences n 7→ an := −1
n

and n 7→ bn := 1
n
. The limit of both of these sequences is 0 but

f(an) = −1 and f(bn) = 1 for all n ∈ N. In terms of the functional limit definition, set ε := 1, say.

Then |f(x) + 1| < 1 for all x ∈ (−∞, 0) while |f(x) − 1| < 1 for all x ∈ (0,∞). Therefore, there

does not exist an L ∈ R and a δ > 0 such that |f(x)− L| < δ for all x ∈ (−δ, 0) ∪ (0, δ).

Example 16.13. Another example is the function

R 3 x 7→ f(x) :=

{
1 for x ∈ I
0 for x ∈ Q

(16.14)
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known as the Dirichlet function. This function has no limit points for any real number. To see

this let c ∈ R. If c ∈ Q, then the sequences defined by

an := c+
1

n
& bn := c+

√
2

n
(16.15)

for all n ∈ N both converge to c but an ∈ Q while bn ∈ I. As a result, the associated sequences after

applying f are f(an) = 0 and f(bn) = 1 for all n ∈ N. These are constant sequences converging to

two different values. If c ∈ I instead, then the sequences defined by

αn := c+
1

n
& βn :=

b10n−1cc
10n−1

(16.16)

for all n ∈ N both converge to c but αn ∈ I while βn ∈ Q. Note that the sequence βn is the decimal

expansion of c, which is why each βn is rational.

Exercise 16.17. Let g : R→ R be the function defined by

g(x) :=

{
x if x ∈ I
0 if x ∈ Q

Find the values of c ∈ R for which lim
x→c

g(x) exists and then find the limit when it exists.

After this lecture, it is recommended the student works through problems 1 and 2 on HW #4.
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17 October 25

Theorem 16.9 allows us to use several facts about sequences that we have already proved.

Corollary 17.1. [Algebraic Limit Theorem for Functional Limits] Let A ⊆ R, let f, g : A → R,
and let c be a limit point of A. Furthermore, suppose that lim

x→c
f(x) = L and lim

x→c
g(x) = M. Then

the following facts follow.

(a) lim
x→c

[
(kf)(x)

]
= kL for all k ∈ R.

(b) lim
x→c

[
(f + g)(x)

]
= L+M.

(c) lim
x→c

[
(fg)(x)

]
= LM.

(d) Let B ⊆ A be the domain over which g is nonzero and so that c is also a limit point of B.

Then lim
x→c

[(
f

g

)
(x)

]
=

L

M
, provided that M 6= 0 (here f

g
is defined on B).

Proof. Exercise. �

Definition 17.2. Let A ⊆ R and let f : A→ R be a function. f is continuous at c ∈ A if for every

ε > 0, there exists a δ > 0 such that f(x) ∈ Vε
(
f(c)

)
for all x ∈ Vδ(c) ∩ A. If f is not continuous

at c ∈ A, then f is said to be discontinuous at c ∈ A. f is continuous on A if f is continuous at c

for all c ∈ A.

The first definition can be rephrased as: “f is continuous at c ∈ A if for every ε > 0, there

exists a δ > 0 such that x ∈ Vδ(c) ∩ A implies f(x) ∈ Vε
(
f(c)

)
.” Yet another way of rephrasing

this even more concisely is: “f is continuous at c ∈ A if for every ε > 0, there exists a δ > 0 such

that f
(
Vδ(c)

)
⊆ Vε

(
f(c)

)
.”

Problem 17.3. Let b · c : R→ R be the floor function.

(a) Show that for z ∈ Z any integer, the function b · c is discontinuous at n.

(b) Show that for r ∈ Zc, i.e. for any real number that is not an integer, the function b · c is

continuous at r.

Answer. The graph of the floor function looks like the following

x

bxc

−2 −1 1 2

−2

−1

1

2

◦◦

◦

◦

◦

•

••

•

•

•
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(a) Fix some integer z ∈ Z. Set ε := 1
2

and consider the ε-neighborhood around bzc = z depicted

as follows (in the figure, z = 1 and is represented by a purple bullet and bzc = z is projected

onto the vertical axis in purple as well)

x

bxc

−2 −1 2

−2

−1

2

◦◦

◦

◦

◦

•

••

•

•

•

2
ε ︷︸︸︷

z
•

bzc •

The region between the two dashed blue lines intercepts the vertical axis along the blue

interval shown. Consider now an arbitrary δ > 0, with δ < 1, and the associated interval

Vδ(z) = (z−δ, z+δ) in the domain (in the figure, vertical dashed green lines depict this region

after intersecting with the horizontal axis)

x

bxc

−2 −1 2

−2

−1

2

◦◦

◦

◦

◦

•

••

•

•

•

2
ε ︷︸︸︷

2δ︷︸︸︷

z
•

bzc •

Every such δ-neighborhood (z − δ, z + δ) around z contains real numbers z−, z+ with

z − δ < z− < z < z+ < z + δ. (17.4)

Then, by definition of the floor function,

bz−c = z − 1 & bz+c = z. (17.5)

Notice that bz−c is not in the ε-neighborhood around bzc = z. Hence, b · c is discontinuous at

z ∈ Z.

(b) Fix some real number r ∈ Zc. Then

brc < z < brc+ 1 (17.6)

with brc ∈ Z. Thus, r is between two consecutive integers. To prove continuity of b · c at r,

fix some ε > 0.
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bxc

−2 −1 1 2

−2

−1

1

2

◦

◦

◦

◦

•

•

•

•

•

r•

zoom in

x

bxc

◦•

•

r
•

brc

brc

•

Because brc < r < brc+ 1, set

δ := min
{
r − brc, brc+ 1− r

}
. (17.7)

This choice is motivated by the following picture (the horizontal direction has been scaled

differently for better viewing)

bxc

◦

◦•

•

•

r−brc︷︸︸︷ brc+1−r︷ ︸︸ ︷

With this choice of δ, it follows that bxc ∈ Vε
(
brc
)

for all x ∈ Vδ(r). Therefore, b · c is

continuous at r ∈ Zc.

The following two exercises were given in Professor Ben-Ari’s advanced calculus course during

a quiz.

Exercise 17.8. Let f : A→ R be a function on a domain A satisfying the condition

|f(x)− f(y)| ≤ |x2 − y2| (17.9)

for all x, y ∈ A. Show that f is continuous.

Exercise 17.10. Let f : A→ R be a function on a domain A satisfying the condition

|f(x)− f(y)| ≤ |(x− y)2| (17.11)

for all x, y ∈ A. Show that f is continuous. In fact, what kind of a function is f?
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Proposition 17.12. Let A ⊆ R and let f : A→ R be a function. If c ∈ A is an isolated point of

A, then f is continuous at a.

Proof. By definition of c being isolated, there exists a δ > 0 such that Vδ(c)∩A \ {c} = ∅. Hence,

for any ε > 0, it is vacuously true that x ∈ Vδ(c)∩A\{c} implies f(x) ∈ Vε
(
f(c)

)
since the former

set is empty. �

Theorem 17.13. Let A ⊆ R, let f : A → R be a function, and let c ∈ A. Then f is continuous

at c if and only if for every sequence a : N → A with lim a = c, it follows that lim(f ◦ a) = f(c).

Furthermore, if c is a limit point of A, these conditions are equivalent to lim
x→c

f(x) = f(c).

Proof. space

(⇒) Suppose f is continuous at c and let a : N → A be a sequence with lim a = c. Fix ε > 0. By

assumption, there exists a δ > 0 such that x ∈ Vδ(c) ∩ A \ {c} implies f(x) ∈ Vε
(
f(c)

)
. Since a

converges to c, there exists an N ∈ N such that an ∈ Vδ(c) for all n ≥ N. Hence∣∣f(c)− f(an)
∣∣ < ε ∀ n ≥ N. (17.14)

Note that if an = c, the left-hand-side of this inequality is zero, which is less than ε.

(⇐) The proof will be via contrapositive. Namely, suppose that f is not continuous at c. Then

there exists a ε > 0 such that for all δ > 0, there exists an x ∈ Vδ(c) ∩ A with f(x) /∈ Vε
(
f(c)

)
.

In particular, for each n ∈ N, setting δn := 1
n

provides the existence of elements an ∈ Vδn(c) ∩ A
satisfying f(an) /∈ Vε

(
f(c)

)
. The sequence a : N→ R satisfies lim a = c by construction. However,

since f(an) /∈ Vε
(
f(c)

)
for all n ∈ N, lim(f ◦ a) 6= f(c). �

Remark 17.15. If f satisfies the condition “if for every sequence a : N → A with lim a = c, it

follows that lim(f ◦ a) = f(c),” then f is said to be sequentially continuous at c. The distinction

between this type of continuity and the definition we have presented is relevant on more general

topological spaces, where these two definitions need not be equivalent.

Corollary 17.16. Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A with

c ∈ A. f is discontinuous at c if and only if there exists a sequence a : N → A with lim a = c but

f ◦ a does not converge to f(c).

Proof. Exercise. �

Warning. Let A ⊆ R and let f : A → R be a continuous function. If a : N → A is a Cauchy

sequence, it is not true that f ◦ a is always a Cauchy sequence. The homework asks you to give

an example of such a domain, function, and sequence.

Theorem 17.17 (Algebraic Continuity Theorem). Let A ⊆ R, let f, g : A → R, and let c ∈ A.
Furthermore, suppose that f and g are continuous at c. Then the following facts follow.

(a) The function kf is continuous at c for all k ∈ R.

(b) The function f + g is continuous at c.

(c) The function fg is continuous at c.

60



(d) Let B ⊆ A be the domain over which g is nonzero and so that c ∈ B. Then the function f
g

is

continuous at c.

Proof. Exercise. �

Theorem 17.18. Let f : A → B ⊆ R and g : B → R be functions continuous at c ∈ A and

f(c) ∈ B, respectively. Then the composition g ◦ f : A→ R is continuous at c.

It is more robust to prove this theorem using the definition of continuity rather than the

sequential characterization.

Proof. Fix ε > 0. By continuity of g at f(c), there exists a δ > 0 such that

y ∈ Vδ
(
f(c)

)
∩B ⇒ g(y) ∈ Vε

(
g
(
f(c)

))
. (17.19)

By continuity of f at c, there exists a γ > 0 such that

x ∈ Vγ(c) ∩ A ⇒ f(x) ∈ Vδ
(
f(c)

)
. (17.20)

Therefore, if x ∈ Vγ(c) ∩ A, then f(x) ∈ Vδ
(
f(c)

)
∩B, which implies g

(
f(x)

)
∈ Vε

(
g
(
f(c)

))
. �

Exercise 17.21. Give a proof of Theorem 17.18 using the definition of sequential continuity for

f and g.

Exercise 17.22. For each of the following conditions, give an example of, or state that the request

is impossible, two functions f : A→ B ⊆ R and g : B → R such that f ◦ g is continuous at c ∈ A
but

(a) f is not continuous at c.

(b) g is not continuous at f(c).

(c) f is not continuous at c and g is not continuous at f(c).

Definition 17.23. Let A ⊆ R. A subset U ⊆ A is said to be open in A if there exists an open set

V ⊆ R with V ∩ A = U.

Theorem 17.24. Let A ⊆ R and f : A → R a function. Then f is continuous on A if and only

if for every open set U ⊆ R, the set f−1(U) ⊆ A is open in A.

Proof. space

(⇒) Suppose f : A → R is continuous. Let U ⊆ R be open and let c ∈ f−1(U). Since U is open,

there exists an ε > 0 such that Vε
(
f(c)

)
⊆ U. By continuity of f at c, there exists a δ > 0 such

that f(x) ∈ Vε
(
f(c)

)
⊆ U for all x ∈ Vδ(c) ∩ A. But this implies Vδ(c) ∩ A ⊆ f−1(U). Since c was

arbitrary, f−1(U) is open.

(⇐) Suppose that f−1(U) is open for all open U ⊆ R. Let c ∈ A. Fix ε > 0. Then Vε
(
f(c)

)
is an

open set. By assumption f−1
(
Vε
(
f(c)

))
is open and c ∈ f−1

(
Vε
(
f(c)

))
. Therefore, by definition

of open sets and open sets in A, there exists a δ > 0 such that Vδ(c) ∩ A ⊆ f−1
(
Vε
(
f(c)

))
.

Therefore, f
(
Vδ(c)

)
⊆ Vε

(
f(c)

)
proving continuity of f at c. Since c was arbitrary, this proves that

f is continuous. �
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It is very important that the preimage of an open set is open for a function to be continuous.

It is not true that a function is continuous if the image of an open set is open.

Definition 17.25. Let A ⊆ R. A function f : A→ R is open if f(U) is open in R for every open

set U in A. f is closed if f(C) is closed in R for every closed set C in A.37

Example 17.26. An example of a continuous function f : R→ R that is neither open nor closed

is R 3 x 7→ f(x) := sin(2πx).38

x

This is because

f
(

(0, 1)
)

= [−1, 1] & f

(
∞⋃
n=1

[
n− 1, n− 1 +

1

4

(
1− 1

2n+2

)])
= [0, 1). (17.27)

The set
∞⋃
n=1

[
n− 1, n− 1 +

1

4
− 1

2n+2

]
≡
∞⋃
n=1

In (17.28)

is closed as can be seen by the following depiction of the individual components

x
I1 I2 I3 I4

The converse is not true either. Namely, an open function need not be continuous. To construct

such a function, we state a definition and some facts that are surprising in their own right.

Definition 17.29. Let A,B ⊆ R. A function f : A→ B is a homeomorphism if f is a continuous

bijection and f−1 : B → A is continuous.

Theorem 17.30. Let a, b ∈ R with a < b. There exists a homeomorphism f : (a, b)→ R.
37Analogous to the definition of an open set in A is that of a closed subset of A. A subset C of A is said to be

closed if there exists a closed set B ⊆ R such that C = B ∩A.
38Technically, we have not defined this function nor shown that it is continuous. We will be able to define it

later geometrically in terms of integrals. If you are uncomfortable with this, instead, defined the function f to be

f(x) :=

{
1− x if x ∈

⋃
z∈Z

[
z + 1

4 , z + 3
4

]
x− 1 if x ∈

⋃
z∈Z

[
z − 1

4 , z + 1
4

] ,
which achieves the same desired goal.
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Proof. Let f : (a, b)→ R be the function

f(x) :=

{
2x−(a+b)
x−a for a < x ≤ a+b

2
2x−(a+b)
b−x for a+b

2
≤ x < b

(17.31)

ba

The continuity of this function is a consequence of problem 2 on HW #4 and the Algebraic

Continuity Theorem (exercise). The inverse of this function is given by

f−1(x) :=

{
(a+b)−ax

2−x for −∞ < x ≤ 0
(a+b)+bx

2+x
for 0 ≤ x <∞

(17.32)

b

a

Since this function is also a ratio of two continuous functions where the denominator never vanishes,

it is continuous by the Algebraic Continuity Theorem. �

Incidentally, this theorem shows that the image of a bounded set under a continuous function

need not be bounded, not even under a homeomorphism.

Theorem 17.33. Let a ∈ R. There exist homeomorphisms (−∞, a)→ R and (a,∞)→ R.

Proof. Exercise. �

Theorem 17.34. Let a, b, c, d ∈ R with a < b and c < d. There exists a homeomorphism (a, b)→
(c, d).
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Proof. Exercise. �

Example 17.35. The present example came from StackExchange39 Let C be the Cantor set

described as the intersection C =
⋂∞
n=1Cn of a finite union of intervals. The complement of the

Cantor set is an infinite union of disjoint open intervals (two of which are unbounded). Namely,

using the notation from my solutions to HW #3, the Cantor set is given by

C =
∞⋂
n=1

 ⋃
α1,...,αn∈Z2

Iα1...αn

 , (17.36)

where the Iα1...αn are the closed intervals making up Cn, the n-th iterate for the construction of

the Cantor set. By De Morgan’s laws, the complement of this is given by

Cc =
∞⋃
n=1

 ⋂
α1,...,αn∈Z2

Icα1...αn

 = (−∞, 0) ∪

(⋃
λ∈Λ

Jλ

)
∪ (1,∞). (17.37)

Here Λ is just some indexed set used to enumerate the open intervals Jλ in [0, 1] ∩ Cc. For each

such open interval, let fλ : Jλ → (−1, 1) be a homeomorphism and let f− : (−∞, 0) → (−1, 1)

and f+ : (0,∞)→ (−1, 1) be homeomorphisms as well. Set J− := (−∞, 0) and J+ := (0,∞) and

Λ′ := Λ ∪ {−} ∪ {+}. Then the function f : R→ R defined by

f(x) :=

{
fλ′(x) if x ∈ Jλ′ for some λ′ ∈ Λ′

0 if x ∈ C
(17.38)

is open but is discontinuous at every point of C.

After this lecture, it is recommended the student works through problems 3 and 4 on HW #4.

Additional recommended exercises include exercises 4.3.6 and 4.3.8 from [2].

39http://math.stackexchange.com/questions/75589/open-maps-which-are-not-continuous.
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18 October 27

Today we will state and prove both the Extreme Value Theorem (EVT) and the Intermediate

Value Theorem (IVT). This is a slight departure in the presentation from the book—we will save

different kinds of continuity for the next lecture.

Theorem 18.1. Let K ⊆ R be a compact subset of R and let f : K → R be continuous. Then

f(K) ⊆ R is a compact subset of R.

Remark 18.2. This result should surprise you. This is because continuous functions preserve

neither closed subsets nor bounded sets (remember that by the Heine-Borel theorem, compact is

equivalent to closed and bounded). Indeed, Example 17.26 illustrates that continuous functions

need not send closed subsets to closed subsets and Theorem 17.30 shows that continuous functions

need not send bounded sets to bounded sets.

Abbott offers a proof of this theorem using the definition of compactness. Instead, we will use

our characterization for what it means for a function to be continuous in terms of open sets.

Proof. Let U := {Uλ}λ∈Λ be an open cover of f(K). Since f is continuous, V := {Vλ := f−1(Uλ)}λ∈Λ

is an open cover of K. Since K is compact, there exists a finite subcover {Vλ1 , . . . , Vλn} of V for

K. Then {Uλ1 , . . . , Uλn} is a finite subcover of U for f(K). �

Theorem 18.3 (Extreme Value Theorem). Let K ⊆ R be compact and let f : K → R be a

continuous function. Then there exist x, z ∈ K such that f(x) ≤ f(y) ≤ f(z) for all y ∈ K.

Proof. Since f(K) is compact by Theorem 18.1, it is closed and bounded. Hence, M := sup f(K)

exists. Furthermore, since f(K) is closed, M ∈ f(K) so that there exists an x ∈ K with f(x) = M.

Similarly, L := inf f(K) exists and is in f(K) so that there exists a z ∈ K with f(z) = L. �

Lemma 18.4. A subset E ⊆ R is disconnected if and only if there exist nonempty open sets U ⊆ E

and V ⊆ E such that U ∩ V = ∅ and U ∪ V = E.

Proof. space

(⇒) Suppose that (A,B) is a separation for E. Set

U := E \ (A ∩ E) & V := E \ (B ∩ E). (18.5)

Then U and V are open subsets of E, and they are nonempty and disjoint because

U ∩ V =
(
E \ (A ∩ E)

)
∩
(
E \ (B ∩ E)

)
= E \

(
(A ∩ E) ∪ (B ∩ E)

)
= E \

(
E ∩ (A ∪B)

)
= E \ E
= ∅

(18.6)
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by De Morgan’s laws (as subsets of E) and a question from the first quiz in our class. Furthermore,

their union is

U ∪ V =
(
E \ (A ∩ E)

)
∪
(
E \ (B ∩ E)

)
= (A ∩ E) ∩ (B ∩ E). (18.7)

again by De Morgan’s laws. Also, note that A ⊆ A because A ∩B = ∅ and A = E \B. Hence,

U ∪ V = (A ∩ E) ∩ (B ∩ E) ⊆ A ∩B ∩ E = ∅ (18.8)

because (A,B) is a separation for E.

(⇐) Suppose that there exist nonempty disjoint open subsets U and V of E such that U ∪V = E.

Set

A := E \ U & B := E \ V. (18.9)

Then A and B are disjoint and closed subsets of E. Because they’re closed, (A∩E)∩B = ∅ and

(B ∩E)∩A = ∅. Finally, A∪B = U ∪ V = E by De Morgan’s laws. Thus (A,B) is a separation

for E. �

Theorem 18.10. Let A ⊆ R be a connected subset of R and let f : A → R be continuous. Then

f(A) ⊆ R is a connected subset of R.

Proof. Suppose to the contrary that f(A) is disconnected. Then by Lemma 18.4, there exist

disjoint nonempty open sets U, V ⊆ R such that(
U ∩ f(A)

)
∪
(
V ∩ f(A)

)
= f(A). (18.11)

Because f is continuous f−1(U) and f−1(V ) are open. Furthermore, they are disjoint by definition

of the inverse image and because U and V are disjoint. Finally,

f−1(U) ∪ f−1(V ) = f−1(U ∪ V ) = f−1
(
f(A)

)
= A (18.12)

contradicting the assumption that A is connected. �

Theorem 18.13 (Intermediate Value Theorem). Let a, b ∈ R with a < b and let f : [a, b] → R
be a continuous function. Then for any L satisfying either f(a) < L < f(b) or f(a) > L > f(b),

there exists a c ∈ (a, b) with f(c) = L.

Proof. Let L ∈
(
f(a), f(b)

)
.40 By Theorem 18.10, f

(
[a, b]

)
is connected and contains f(a) and

f(b). By Theorem 12.10,
[
f(a), f(b)

]
⊆ f

(
[a, b]

)
. Hence, for any L ∈

(
f(a), f(b)

)
, it follows that

L ∈ f
(
[a, b]

)
. Therefore, there exists a c ∈ (a, b) such that f(c) = L. �

Definition 18.14. Let A ⊆ R. A function f : A → R is non-decreasing if f(x) ≤ f(y) for all

x, y ∈ A with x ≤ y. f is non-increasing if f(x) ≥ f(y) for all x, y ∈ A with x ≥ y. f is monotone

if it is either non-increasing or non-decreasing.

Before giving an example of such a function, we discuss some properties of monotone functions.

40Note that there is nothing to prove if f(a) = f(b). The following proof is modified from what it was before

and is based on Kevin Pratt’s idea.
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Definition 18.15. Let a, b ∈ R with a ≤ b. A function f : [a, b] → R has the intermediate value

property if for all x, y ∈ [a, b] with x < y and all L ∈
(
f(x), f(y)

)
, there exists a c ∈ (x, y) such

that f(c) = L.

Theorem 18.16. Let a, b ∈ R with a ≤ b. Let f : [a, b] → R be a monotone function with the

intermediate value property. Then f is continuous.

Proof. Exercise. �

Definition 18.17. Let f : A→ R be a function. Let

Df := {x ∈ A : f is discontinuous at x} (18.18)

be the set of points at which f is discontinuous.

Example 18.19. For each n ∈ N, define a function[
1− 1

2n−1
, 1− 1

2n

)
3 x 7→ fn(x) :=

{
0 if n = 1

1
2n−1 otherwise

(18.20)

The function f : [0, 1)→ R defined by

[0, 1) 3 x 7→ f(x) := fn(x) if x ∈
[
1− 1

2n−1
, 1− 1

2n

)
. (18.21)

x•

•

•
••
•

◦

◦

◦
◦◦
◦1

1

Then f is non-decreasing and has a countable set of discontinuities.

The set of discontinuities on R can be separated into three types of interest. To define these

types, we define left and right limits.

Definition 18.22. Let A ⊆ R, let f : A → R, and let c be a limit point of A. The left-hand

limit of f as x approaches c (a.k.a. limit of f as x approaches c from the left) is a real number

L− := lim
x→c−

f(x) satisfying the condition that for every ε > 0, there exists a δ > 0 such that

f(x) ∈ Vε(L−) for all x ∈ (c − δ, c) ∩ A. Similarly, the right-hand limit of f as x approaches c

(a.k.a. limit of f as x approaches c from the right) is a real number L+ := lim
x→c+

f(x) satisfying the

condition that for every ε > 0, there exists a δ > 0 such that f(x) ∈ Vε(L+) for all x ∈ (c, c+δ)∩A.
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Theorem 18.23. Let A ⊆ R, let f : A→ R, and let c be a limit point of A. Then

lim
x→c

f(x) = L (18.24)

if and only if

lim
x→c−

f(x) = L & lim
x→c+

f(x) = L. (18.25)

Proof. Exercise. �

Definition 18.26. Let A ⊆ R, let f : A→ R, and let c be a limit point of A with c ∈ A.

(a) If lim
x→c

f(x) exists but does not equal f(c), then f is said to have a removable discontinuity at

c.

(b) If lim
x→c−

f(x) and lim
x→c+

f(x) both exist but are not equal, then f is said to have a jump discon-

tinuity at c.

(c) If lim
x→c

f(x) does not exist for some other reason, then f is said to have a essential discontinuity

at c.

Theorem 18.27. Let C ⊆ R and let f : C → R be a non-decreasing function and let c ∈ C be a

limit point of C such that

(−∞, c) ∩ C 6= ∅ & (c,∞) ∩ C 6= ∅. (18.28)

Then lim
x→c−

f(x) and lim
x→c+

f(x) both exist and satisfy

lim
x→c−

f(x) ≤ lim
x→c+

f(x). (18.29)

In particular, the only allowed discontinuities for a non-decreasing function are jump discontinu-

ities.

Proof. Since f is non-decreasing and (18.28) holds, the sets

A := f
(
(−∞, c) ∩ C

)
& B := f

(
C ∩ (c,∞)

)
(18.30)

are both nonempty and bounded from above and below, respectively. Then the theorem will follow

if it is shown that

lim
x→c−

f(x) = supA & lim
x→c+

f(x) = inf B (18.31)

since the latter quantities exist by the Axiom of Completeness. Set

s := supA & i := inf B. (18.32)

Fix ε− > 0. By Lemma 3.31, there exists an element a ∈ A such that s− ε− < a. But by definition

of A, this means there exists an element y ∈ A such that f(y) = a. Thus, s − ε− < f(y). Set

δ− := c− y. Note that δ− > 0 because y ∈ (−∞, c)∩C. Hence, for all x ∈ (c− δ−, c)∩C, it follows

that

s− ε− < f(y) = f(c− δ−) ≤ f(x) ≤ s < s+ ε− (18.33)
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because f is non-decreasing. Thus f(x) ∈ Vε−(s) showing that lim
x→c−

f(x) = s. A similar argument

shows that lim
x→c+

f(x) = inf B.

The last claim follows from the fact that the elements of A are all lower bounds for B because

f is non-decreasing. Thus, A is contained in the set LB of all lower bounds of B. By a problem

from our first homework set, supLB = inf B (this was problem 4). By another exercise earlier

in the semester, since A ⊆ LB, it follows that supA ≤ supLB. Combining these two inequalities

gives supA ≤ inf B. �

Theorem 18.34. Let f : A→ R be a non-decreasing function. Then Df is at most countable.

Proof. Let c ∈ Df . Then

lim
x→c−

f(x) < lim
x→c+

f(x) (18.35)

by the previous theorem and the fact that c is a discontinuity. By the Density of Q in R, there

exists a rational number rc satisfying

lim
x→c−

f(x) < rc < lim
x→c+

f(x). (18.36)

Because f is non-decreasing, the function

Df → Q
c 7→ rc

(18.37)

is one-to-one. This identifies Df with a subset of Q and is therefore at most countable. �

Remark 18.38. Given a countable subset C of (a, b) with a < b and a, b ∈ R, Rudin [6] (see

Remark 4.31) provides a surprising construction of a monotone function f : (a, b) → R for which

f is discontinuous at all points in C.

Theorem 18.39. Let a, b ∈ R with a < b. Let f : (a, b)→ R be a continuous 1-1 function. Then

f is monotone. Let g : [a, b] → R be a continuous 1-1 function. Then g is monotone and attains

its maximum and minimum at a and b.

Proof. Exercise. �

After this lecture, it is recommended the student works through problems 5 and 7 on HW #4.

It goes without saying that the reader should also attempt the exercises listed in these notes.
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19 November 1

Today we will discuss different kinds of continuity for functions, their properties, and their relations

to each other. To be pedantic, we will review the definition of continuity itself but this time be

very careful about the notation to illustrate how every quantity depends on every other quantity.

Definition 19.1. Let A ⊆ R and let f : A → R be a function. f is continuous at c ∈ A if for

every ε > 0, there exists a δ(c, ε) > 0 such that f(x) ∈ Vε
(
f(c)

)
for all x ∈ Vδ(c,ε)(c) ∩ A. f is

continuous on A if f is continuous at c for all c ∈ A.

Remark 19.2. Note that the δ in the definition of continuity depends on both the point c ∈ A
and the number ε. To be honest, I should have been careful from the start about this. In other

words, if I wanted to show that a function f is continuous on A, if you provide me with a family

of ε’s parametrized by the elements c ∈ A, I would have to come up with a δ that may depend on

both c and ε.

Definition 19.3. Let A ⊆ R and let f : A→ R be a function. f is uniformly continuous on A if

for every ε > 0 there exists a δ(ε) > 0 such that |f(x)− f(y)| < ε for all pairs of elements x, y ∈ A
with |x− y| < δ(ε).

Remark 19.4. Using this more precise notation, we see that the definition of uniform continuity

no longer depends on the point c ∈ A but depends only on the number ε. In other words, if I

wanted to show that a function f is uniformly continuous on A, if you provide me with a single ε,

I would have to come up with a δ that depends only on ε.

Example 19.5. The function f−1 from the proof of Theorem 17.30 is uniformly continuous. As

a simplification, we set a = −1 and b = 1 so that

R 3 x 7→ f−1(x) :=

{
x

2−x for −∞ < x ≤ 0
x

2+x
for 0 ≤ x <∞

(19.6)

To see that this function is uniformly continuous, fix ε > 0.

4ε
1−ε︷ ︸︸ ︷

2
ε

︷
︸︸

︷

1

−1
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It is apparent from a visualization of this function that the steepest curvature occurs at x =

0. Hence, if we find an appropriate δ(ε) at x = 0, this δ(ε) should work for all other points.

Fortunately, this δ(ε) is easy to solve for because the function is increasing.41 Furthermore, we

know the inverse, so we just plug in x = ε for the right-hand-side of the piece-wise defined function:

δ(ε) :=
2ε

1− ε
for ε < 1. (19.7)

If ε ≥ 1, any number δ(ε) > 0 will work. To check that this δ(ε) works at every point, there

are four cases to check since any pair of numbers x, y ∈ R could be in either (−∞, 0] or [0,∞).

However, by symmetry, it suffices to check only two cases. Thus, first suppose x, y ∈ [0,∞) with

x ≤ y and |y − x| < δ(ε). Set

α := y − x. (19.8)

By these assumptions, 0 < α < δ(ε). Then,∣∣f−1(y)− f−1(x)
∣∣ =

y

2 + y
− x

2 + x
since f−1 is increasing and x < y

=
y(2 + x)− x(2 + y)

(2 + y)(2 + x)

=
(x+ α)(2 + x)− x(2 + x+ α)

(2 + x+ α)(2 + x)

=
2α

(2 + x)2 + (2 + x)α

≤ α

2 + α
since x ≥ 0

<
δ

2 + δ
since f−1 is strictly increasing and α < δ

=
2ε

2(1− ε) + 2ε

= ε

(19.9)

The other cases are treated similarly and are left to the reader. Thus, f−1 is uniformly continuous.

Before we give an example of a continuous function that is not uniformly continuous, let us

explicitly say what it means for f : A→ R to not be uniformly continuous on A. f is not uniformly

continuous on A if and only if there exists an ε > 0 for which there is no δ(ε) > 0 satisfying the

condition that
∣∣f(x)− f(y)

∣∣ < ε for all x, y ∈ A satisfying |x− y| < δ(ε). In other words, f is not

uniformly continuous on A if and only if there exists an ε > 0 such that for all δ(ε) > 0, there exist

x, y ∈ A satisfying |x− y| < δ(ε) but
∣∣f(x)− f(y)

∣∣ ≥ ε.

Example 19.10. The function f : (a, b) → R from the proof of Theorem 17.30 is not uniformly

continuous. Again, for simplicity, we set a = −1 and b = 1. In this case, this function is given by

f(x) :=

{
2x
x+1

for − 1 < x ≤ 0
2x

1−x for 0 ≤ x < 1
(19.11)

41Exercise: prove that f−1 : R→ (−1, 1) is strictly increasing.
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To see that f is not uniformly continuous, it suffices to find an ε > 0 for which there does not exist

a δ(ε) > 0 satisfying |f(x) − f(y)| < ε for all x, y ∈ (−1, 1) satisfying |x − y| < δ(ε). It turns out

that we can do better. We will show that for every ε > 0, there does not exist a δ(ε) > 0 satisfying

the above property. Thus, fix ε > 0 and fix δ(ε) > 0. It suffices to assume that δ(ε) < 2 to begin

with since the domain of f is (−1, 1). Then, set

x := 1− δ(ε). (19.12)

1−1
•
x

If x ≥ 0, then set y to be any number in the range42

1− 2δ(ε)

2 + εδ(ε)
< y < 1. (19.13)

The following two inequalities obtained from this are useful:

1

1− y
<

2δ(ε)

2 + εδ(ε)
& y

(
2 + εδ(ε)

)
> 2 + εδ(ε)− 2δ(ε). (19.14)

Note that such y satisfies 1− 2δ(ε) < y < 1 (in fact, it satisfies 1− δ(ε) < y < 1). With this choice

of y, ∣∣f(y)− f(x)
∣∣ =

2y

1− y
− 2(1− δ(ε))

δ(ε)

=
2δ(ε)− 2 + 2y

(1− y)δ(ε)

>

(
2δ(ε)− 2 + 2y

)(
2 + εδ(ε)

)
2δ(ε)2

=

(
2δ(ε)− 2

)(
2 + εδ(ε)

)
+ 2y

(
2 + εδ(ε)

)
2δ(ε)2

> ε.

(19.15)

42This choice was motivated by considering the desired inequality

2y

1− y
− 2(1− δ(ε))

δ(ε)
> ε.
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In other words, the two previous examples illustrate that even if a homeomorphism is uniformly

continuous, the inverse of the homeomorphism need not be.

Proposition 19.16. Let f : A→ R be a uniformly continuous function and let B ⊆ A. Then the

restriction of f to B is uniformly continuous.

Proof. Exercise. �

From the previous examples, one might conjecture that a bounded continuous function is uni-

formly continuous. This is not the case. However, it is a little difficult to prove this using ε’s and

δ’s as we have done above in Example 19.10. To help us, we will provide a test for lack of uniform

continuity in terms of convergent sequences, similarly to how convergent sequences can be used to

prove that a particular function is not continuous.

Theorem 19.17. Let A ⊆ R and let f : A→ R be a function. f is not uniformly continuous on

A if and only if there exists an ε > 0 and two sequences a, b : N→ A satisfying

lim(b− a) = 0 &
∣∣f(an)− f(bn)

∣∣ ≥ ε ∀ n ∈ N. (19.18)

Proof. space

(⇒) Suppose f is not uniformly continuous. Fix ε > 0. Then, by the discussion preceding Example

19.10, for every n ∈ N, there exists a pair of elements an, bn ∈ A with |an − bn| < 1
n

satisfying∣∣f(an)− f(bn)
∣∣ ≥ ε. By construction, these sequences satisfy the required conditions.

(⇐) Suppose there exists an ε > 0 and two sequences a, b : N → A satisfying (19.18). Then, for

any δ > 0, since the sequence a−b converges to zero, there exists an N ∈ N such that |an−bn| < δ

for all n ≥ N. By assumption
∣∣f(an)− f(bn)

∣∣ ≥ ε showing that f is not uniformly continuous. �

Example 19.19. An example of a continuous bounded function that is not uniformly continuous

is

(0, 1] 3 x 7→ f(x) := sin

(
2π

x

)
(19.20)

as is discussed in Abbott’s book.

Remark 19.21. This function is also useful in topology where it provides several counterexamples

(its graph with the origin included is connected but not path-connected). It is known as the

topologist’s sine curve.

Exercise 19.22. Prove or disprove the following. Let A,B ⊆ R with B bounded and let f : A→ B

be a homeomorphism. Then f is uniformly continuous.

Theorem 19.23 (Uniform continuity on compact sets). Let K ⊆ R be a compact set and let

f : K → R be a continuous function. Then f is uniformly continuous.

Proof. See Abbott. �

Definition 19.24. A function f : A→ R is called Lipschitz if there exists an M ∈ R such that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M (19.25)

for all x, y ∈ A with x 6= y.
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Theorem 19.26. Let A ⊆ R and let f : A→ R be a function. If f is Lipschitz continuous the f is

uniformly continuous. If f is uniformly continuous then f is continuous. Neither of the converse

statements are true.

Proof. Exercise. �

Instead of proving this theorem in full, we merely provide an example of a uniformly continuous

function that is not Lipschitz.

x

√
|x|

1

−1 1

and leave it to the reader to show that this function satisfies the mentioned properties.

After this lecture, it is recommended the student works through problem 6 on HW #4.
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20 November 3

It is often useful to express physical phenomena in terms of differential equations. These equations

describe the rates of change of particular quantities depending on at least one variable. For

example, Schrödinger’s equation describes the rate of change of a vector ψ in some (usually infinite-

dimensional) vector space subject to dynamics described by a self-adjoint operator H on that vector

space
√
−1

dψ(t)

dt
= (Hψ)(t). (20.1)

Knowing the rate of change of such a quantity, one can, in principle, predict the future state of a

system given some initial condition. Only the rate of change is sufficient to determine the future,

which is why Schrödinger’s equation is a first order differential equation. Incompressible fluid flow

can be described as a second order differential equation (known as the Navier-Stokes equation) by

∂~u

∂t
+ 〈~u,∇ · ~u〉 = −∇P

ρ
+ ν∇2~u, (20.2)

where ~u(x, y, z, t) is the velocity of the fluid at some position (x, y, z) at the moment in time t, P

is the pressure (also a function of space and time), ρ is the density of the fluid, ν is some constant,

and ∇ is the gradient. As exciting as these and related differential equations are, we will first

dedicate some time to understanding the notion of a rate of change of a function.

Remark 20.3. It is worth pointing out that it is not known whether there always exist reasonable

solutions to the Navier-Stokes equation under some physically reasonable conditions. This question

has been deemed so important that it has a bounty of $1,000,000.

Definition 20.4. Let A ⊆ R and f : A → R. Let c be a limit point of A with c ∈ A. Then the

derivative of f at c is defined to be the functional limit

f ′(c) := lim
x→c

f(x)− f(c)

x− c
(20.5)

if it exists. When the derivative of f at c exists, f is said to be differentiable at c. If f is

differentiable at c for all c ∈ A, then f is differentiable on A.

Proposition 20.6. f : A → R is differentiable at c ∈ A if and only if there exists a linear

function43 Dcf : R→ R such that

lim
x→c

f(x)− f(c)− (Dcf)(x− c)
x− c

= 0. (20.7)

Proof. space

(⇒) Suppose f is differentiable at c with derivative f ′(c). Define the function Dcf : R→ R to be

R 3 y 7→ (Dcf)(y) := f ′(c)y. (20.8)

43A function g : R→ R is linear if g(ax+ y) = ag(x) + g(y) for all a, x, y ∈ R.
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Then, by the Algebraic Limit Theorem for functional limits

lim
x→c

f(x)− f(c)− (Dcf)(x− c)
x− c

= lim
x→c

(
f(x)− f(c)

x− c
− f ′(c)

)
by (20.8)

= lim
x→c

(
f(x)− f(c)

x− c

)
− lim

x→c

(
f ′(c)

)
by Corollary 17.1

= f ′(c)− f ′(c)
= 0.

(20.9)

(⇐) Suppose that there exists a Dcf : R→ R as in the description. Set

f ′(c) := (Dcf)(1). (20.10)

Then, by a similar calculation to the previous direction,

0 = lim
x→c

f(x)− f(c)− (Dcf)(x− c)
x− c

= lim
x→c

(
f(x)− f(c)

x− c
− f ′(c)

)
. (20.11)

By Exercise 2.3.10 part (a)44 in [2] and the sequential characterization for limits (see Theorem

16.9), this implies

lim
x→c

f(x)− f(c)

x− c
= lim

x→c
f ′(c) = f ′(c). (20.12)

�

Definition 20.13. Let f : A → R be differentiable at c. The linear function Dcf : R → R from

Proposition 20.6 is called the differential of f at c.

Remark 20.14. This equivalent definition of the derivative provides a useful perspective when

generalizing to higher-dimensional derivatives.45 We will also see in a moment that the chain rule

is expressed particularly elegantly in terms of differentials.

Example 20.15. See Abbott.

Theorem 20.16. Let f : A → R be a function that is differentiable at a limit point c of A with

c ∈ A. Then f is continuous at c.

For this proof, it will be useful to recall the equivalent notions of continuity from Theorem

17.13 so that we may avoid an explicit ε and δ proof for continuity.

Proof. By the Algebraic Limit Theorem for functional limits

lim
x→c

(
f(x)− f(c)

)
= lim

x→c

((
f(x)− f(c)

x− c

)
(x− c)

)
= lim

x→c

(
f(x)− f(c)

x− c

)
lim
x→c

(
(x− c)

)
by Corollary 17.1

=
(
f ′(c)

)
(0)

= 0,

(20.17)

44This exercise says that if two sequences a, b : N→ R satisfy lim(a− b) = 0, then lim a = lim b.
45If you recall from calculus, if you have a function f : R3 → R, then ∇f, the gradient of f, has as its input a

vector ~v at some point x ∈ R3 so that (∇~vf)(x) describes the derivative of f at x in the direction ~v. However, to

be consistent with our notation, we would instead write this as (∇xf)(~v).
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which, again by Exercise 2.3.10 part (a) in [2] and the sequential characterization for limits (see

Theorem 16.9), this shows that

lim
x→c

f(x) = f(c). (20.18)

This proves that f is continuous at c due to the functional limit characterization of continuity

from Theorem 17.13. �

Theorem 20.19 (Chain rule). Let A,B ⊆ R, let f : A→ R with f(A) ⊆ B and let g : B → R. Let

c be a limit point of A with c ∈ A and let f(c) be a limit point of B. Suppose that f is differentiable

at c and g is differentiable at f(c). Then g ◦ f is differentiable at c and its derivative is given by

(g ◦ f)′(c) = g′
(
f(c)

)
f ′(c). (20.20)

The chain rule takes a particularly appealing form if expressed using the equivalent definition

of the derivative in terms of linear functions (see Proposition 20.6).

Theorem 20.21 (Differential form of the chain rule). Let A,B ⊆ R, let f : A→ R with f(A) ⊆ B

and let g : B → R. Let c be a limit point of A with c ∈ A and let f(c) be a limit point of B. Suppose

that f is differentiable at c with differential Dcf and g is differentiable at f(c) with differential

Df(c)g. Then g ◦ f is differentiable at c with differential

Dc(g ◦ f) = Df(c)g ◦Dcf. (20.22)

Proof. The goal is to show46

lim
x→c

(
(g ◦ f)(x)− (g ◦ f)(c)− (Df(c)g ◦Dcf)(x− c)

x− c

)
= 0. (20.23)

Set

h(x) :=
(g ◦ f)(x)− (g ◦ f)(c)− (Df(c)g ◦Dcf)(x− c)

x− c
. (20.24)

Then h splits into two terms as follows

h(x) =
g
(
f(x)

)
− g
(
f(c)

)
− (Df(c)g)

(
f(x)− f(c)−

(
f(x)− f(c)− (Dcf)(x− c)

))
x− c

=
g
(
f(x)

)
− g
(
f(c)

)
− (Df(c)g)

(
f(x)− f(c)

)
x− c

+ (Df(c)g)

(
f(x)− f(c)− (Dcf)(x− c)

x− c

)
.

(20.25)

Focusing on the second term, because Df(c)g is linear,

lim
x→c

(Df(c)g)

(
f(x)− f(c)− (Dcf)(x− c)

x− c

)
= Df(c)g

(
lim
x→c

f(x)− f(c)− (Dcf)(x− c)
x− c

)
= (Df(c)g)(0)

= 0

(20.26)

46The present proof follows the proof in [7] rather closely.
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by part (a) of the Algebraic Limit Theorem for Functional Limits. The first term will involve a

rather intricate ε and δ argument. Fix ε > 0. The goal is to show that there exists a δ > 0 such

that ∣∣∣g(f(x)
)
− g
(
f(c)

)
− (Df(c)g)

(
f(x)− f(c)

)∣∣∣ < ε|x− c| ∀ x ∈ Vδ(c). (20.27)

Because f is differentiable at c, there exists a δf > 0 such that47∣∣f(x)− f(c)− (Dcf)(x− c)
∣∣ < |x− c| ∀ x ∈ Vδf (c). (20.28)

Set

εg :=
ε

1 + |f ′(c)|
. (20.29)

Because g is differentiable at f(c), there exists a δg > 0 such that∣∣∣g(y)− g
(
f(c)

)
− (Df(c)g)

(
y − f(c)

)∣∣∣ < ε
∣∣y − f(c)

∣∣ ∀ y ∈ Vδg
(
f(c)

)
. (20.30)

Since f is differentiable at c, f is also continuous at c by Theorem 20.16. Therefore, there exists

a δ′ > 0 such that ∣∣f(x)− f(c)
∣∣ < δg ∀ x ∈ Vδ′(c). (20.31)

Set

δ := min{δ′, δf}. (20.32)

Putting all these inequalities together gives∣∣∣g(f(x)
)
− g
(
f(c)

)
− (Df(c)g)

(
f(x)− f(c)

)∣∣∣
< εg

∣∣f(x)− f(c)
∣∣ by (20.30) and (20.31)

= εg
∣∣f(x)− f(c)− (Dcf)(x− c) + (Dcf)(x− c)

∣∣
≤ εg

(∣∣f(x)− f(c)− (Dcf)(x− c)
∣∣+
∣∣(Dcf)(x− c)

∣∣) by the triangle inequality

≤ εg

(
|x− c|+ |f ′(c)||x− c|

)
by (20.28) Proposition 20.6

= ε|x− c| ∀ x ∈ Vδ(c) by (20.29),

(20.33)

which proves that

lim
x→c

g
(
f(x)

)
− g
(
f(c)

)
− (Df(c)g)

(
f(x)− f(c)

)
x− c

= 0. (20.34)

Therefore, lim
x→c

h(x) = 0 and the chain rule is proved. �

Remark 20.35. Equation (20.22) depicts a form of the Chain Rule that can be visualized dia-

grammatically as follows. The functions g, f, and their compositions form a diagram

R

B

A

f

ZZ
g

��

g◦f
oo

(20.36)

47The εf here was chosen to be 1.
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and this diagram gets sent to the diagram

R

R

R

Dcf

ZZ
Df(c)g

��

Dc(g◦f)
oo

(20.37)

upon applying the differential. We say that this latter diagram commutes because first performing

the transformation Dcf and then applying Df(c)g gives, by definition, Df(c)g◦Dcf, but the diagram

indicates that this latter transformation must be equal to Dc(g ◦ f).

Theorem 20.38. [Algebraic Differentiability Theorem] Let A ⊆ R, let f, g : A → R, and let

c ∈ A. Furthermore, suppose that f and g are differentiable at c with derivatives f ′(c) and g′(c),

respectively. Then the following facts hold.

(a) The function kf is differentiable at c for all k ∈ R with derivative (kf)′(c) = kf ′(c).

(b) The function f + g is differentiable at c with derivative (f + g)′(c) = f ′(c) + g′(c).

(c) The function fg is differentiable at c with derivative (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(d) Let B ⊆ A be the domain over which g is nonzero and so that c ∈ B. Then the function f
g

is

differentiable at c with derivative
(
f
g

)′
(c) = f ′(c)g(c)−f(c)g′(c)

[g(c)]2
.

Proof. Exercise. �

After this lecture, it is recommended the student works through problems 1 and 2 on HW #5.
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21 November 8

Today we will present many of the great theorems of calculus. Rather than reproving the same

theorems in Abbott, we will prove only those that were left as exercises. Abbott discusses an

example of a function that is differentiable everywhere, but its derivative function is not continuous.

However, we have not yet established the necessary results to talk about this function. We will be

better prepared to do so after a few more lectures when we discuss series of functions and their

derivatives. At that point, we will define the sin and cos functions and explore their derivatives.

We will also be able to discuss the derivative of the exponential function.

Theorem 21.1 (Interior Extremum Theorem). Let a, b ∈ R with a < b and let f : (a, b)→ R be a

function that is differentiable on (a, b). If there exists a point c ∈ (a, b) for which either f(x) ≤ f(c)

for all x ∈ (a, b) or f(x) ≥ f(c) for all x ∈ (a, b) then f ′(c) = 0.

Proof. See Abbott. �

Lemma 21.2. Let a, b ∈ R with a < b and let g : [a, b]→ R be a function that is differentiable on

[a, b] satisfying

g′(a) < 0 < g′(b). (21.3)

Then there exist x, y ∈ (a, b) satisfying

g(a) > g(x) & g(y) < g(b). (21.4)

Proof. Set ε := −g′(a). Since g is differentiable at a, there exists a δ > 0 such that

−ε < g(x)− g(a)

x− a
− g′(a) < ε ∀ x ∈ [a, a+ δ). (21.5)

Since x− a > 0, multiplying throughout, using the fact that ε = −g′(a), and rearranging gives

g(x) < g(a) ∀ x ∈ [a, a+ δ). (21.6)

This proves that there exists some x ∈ (a, b) such that g(x) < g(a). A similar argument shows

that there exists a y ∈ (a, b) such that g(y) < g(b). �

The proof of this theorem actually showed more than the statement provided. In fact, under

the same hypotheses, there exist neighborhoods around the points a and b for which the value of

g satisfies the inequality provided for all such points.

Theorem 21.7 (Darboux’s Theorem). Let a, b ∈ R with a < b and let f : [a, b]→ R be a function

that is differentiable on [a, b]. Then f ′ satisfies the intermediate value property.

Proof. Let α ∈ R satisfy f ′(a) < α < f ′(b) if f ′(a) < f ′(b) or f ′(a) > α > f ′(b) if f ′(a) > f ′(b).

Without loss of generality, consider the first case.48 Define g : [a, b]→ R by

[a, b] 3 x 7→ g(x) := f(x)− αx. (21.8)

48The goal is to prove that there exists a c ∈ (a, b) such that f ′(c) = α.
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Then g is differentiable and, by the Algebraic Differentiability Theorem, g′(x) = f ′(x)− α for all

x ∈ [a, b]. By assumption, g′(a) < 0 < g′(b). By the previous Lemma, there exist points x, y ∈ (a, b)

such that g(a) > g(x) and g(y) < g(b). By the Extreme Value Theorem, g attains its minimum on

[a, b] (because g is continuous). By the preceding facts, the minimum of g is not attained at a or b

since it was shown there exist x and y satisfying g(a) > g(x) and g(y) < g(b). Hence, there exists

a c ∈ (a, b) for which g(c) ≤ g(z) for all z ∈ [a, b]. By the Interior Extremum Theorem, g′(c) = 0.

By definition of g, this means f ′(c) = α. Thus f satisfies the intermediate value property. �

This result makes it seem even less plausible for the existence of a function that is differentiable

yet its derivative function is discontinuous.

Theorem 21.9 (Rolle’s Theorem). Let a, b ∈ R with a < b and let f : [a, b] → R be a function

satisfying

i) f is continuous on [a, b],

ii) f is differentiable on (a, b), and

iii) f(a) = f(b).

Then there exists a point c ∈ (a, b) with f ′(c) = 0.

Proof. See Abbott. �

A slight generalization of Rolle’s theorem is the Mean Value Theorem.

Theorem 21.10. [Mean Value Theorem] Let a, b ∈ R with a < b and let f : [a, b] → R be a

function satisfying

i) f is continuous on [a, b] and

ii) f is differentiable on (a, b).

Then there exists a point c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
. (21.11)

Proof. See Abbott. �

Rolle’s Theorem is a special case of the Mean Value Theorem obtained by setting f(a) = f(b).

Theorem 21.12 (Generalized Mean Value Theorem). Let a, b ∈ R with a < b and let f, g : [a, b]→
R be two functions satisfying

i) f is continuous on [a, b] and

ii) f is differentiable on (a, b).
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Then there exists a point c ∈ (a, b) with(
f(b)− f(a)

)
g′(c) =

(
g(b)− g(a)

)
f ′(c). (21.13)

Furthermore, if, in addition, g′ is never zero on (a, b), then

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
. (21.14)

Proof. Define h : [a, b]→ R to be the function

h :=
[
f(b)− f(a)

]
g −

[
g(b)− g(a)

]
f. (21.15)

Then, by the Algebraic Differentiability Theorem, h is continuous on [a, b] and differentiable on

(a, b). Furthermore,

h(a) = f(b)g(a)− g(b)f(a) & h(b) = g(a)f(b)− f(a)g(b), (21.16)

showing that h(a) = h(b). By Rolle’s Theorem, there exists a c ∈ (a, b) such that h′(c) = 0, i.e.

there exists a c ∈ (a, b) such that[
f(b)− f(a)

]
g′(c)−

[
g(b)− g(a)

]
f ′(c) = 0. (21.17)

This proves the claim. �

The Mean Value Theorem is the special case of the Generalized Mean Value Theorem with

g(x) = x for all x ∈ [a, b]. To see this more clearly, notice that because a < b, the conclusion can

be equivalently written as (
f(b)− f(a)

b− a

)
g′(c) =

(
g(b)− g(a)

b− a

)
f ′(c). (21.18)

Theorem 21.19 (L’Hospital’s Rule: 0/0 case). Let a < b and let c ∈ [a, b]. Let f, g : [a, b]→ R be

continuous functions and suppose that the restrictions of f and g to [a, c)∪ (c, b] are differentiable.

Furthermore, suppose that f(a) = g(a) = 0 and g′(x) 6= 0 for all x ∈ [a, c) ∪ (c, b]. Then

lim
x→c

f ′(x)

g′(x)
= L ⇒ lim

x→c

f(x)

g(x)
= L. (21.20)

Notice the very crucial direction of implication in this theorem.

Proof. Exercise. �

Theorem 21.21 (L’Hospital’s Rule: ∞/∞ case). Let a < b and let c ∈ (a, b). Let f, g : (a, c) ∪
(c, b)→ R be differentiable functions. Furthermore, suppose that g′(x) 6= 0 for all x ∈ (a, c)∪(c, b).

If lim
x→c

g(x) = ±∞, then

lim
x→c

f ′(x)

g′(x)
= L ⇒ lim

x→c

f(x)

g(x)
= L. (21.22)

Proof. See Abbott. �

After this lecture, it is recommended the student works through problems 3 and 4 on HW #5.
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22 November 10

Earlier, we saw that a monotone function has an at most countable set of discontinuities (an

arbitrary function can have an uncountable number of discontinuities, such as the Dirichlet func-

tion). We also mentioned that given a domain A and any at most countable subset C ⊆ A, there

exists a monotone function whose set of discontinuities coincides with C. In analogy to the set

of discontinuities of a function, we could ask what are the possible points at which a function is

not differentiable? Such a concept is meaningless for functions that are discontinuous since it is

necessary that a differentiable function is continuous. Thus, we could ask what the set of points

at which a continuous function is not differentiable looks like. Can we construct a continuous

function that is not differentiable on any arbitrary at most countable subset of its domain? Today

we will construct an example of a continuous function that is not differentiable at any point in its

domain.

Example 22.1. Let h0 : R → R be the function defined as follows. For any z ∈ Z, if x ∈
[2z − 1, 2z + 1], set

h0(x) := |x− 2z|, (22.2)

as depicted in the following graph.

x

1

−3 −2 −1 1 2 3

For each n ∈ N, set hn : R→ R to be the function defined by

R 3 x 7→ hn(x) :=
1

2n
h0(2nx). (22.3)

For n = 1, 2, 3, these functions are depicted in the graph below

x

h0
h1
h2
h3

1

−3 −2 −1 1 2 3

Then, for each x ∈ R, set

g(x) :=
∞∑
n=0

hn(x). (22.4)

This sum converges (absolutely) for each x ∈ R because

|hn(x)| =
∣∣∣∣h0(2nx)

2n

∣∣∣∣ ≤ 1

2n
(22.5)
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since h0(x) is bounded by 1. Thus,

g(x) ≤
∞∑
n=0

1

2n
= 2 (22.6)

showing that the partial sums
∑m

n=0 hn(x) are bounded. Because this sequence of partial sums is

monotone non-decreasing, by the monotone convergence theorem, it converges. However, notice

that if we want to study the properties of the function g : R→ R defined by

R 3 x 7→ g(x), (22.7)

we would need to establish some results concerning infinite sums of functions. For example, is it

true that
∑∞

n=0 hn is a continuous function? Before we can answer any of these questions, we should

talk about sequences of functions and what properties (such as continuity and differentiability)

are preserved when taking an infinite sum of such functions. Therefore, we must put this example

on hold and study these concepts.

Example 22.8. Incidentally, we will also be able to use these concepts to provide an example of

a function that is differentiable everywhere but its derivative function is discontinuous. Such a

function is given by the following

R 3 x 7→

{
0 if x = 0∑∞

n=0
(−1)nx2n+3

(2n+1)!
otherwise

(22.9)

The derivative of this function is discontinuous at x = 0. However, it is not obvious that one can

apply the derivative to each constituent in the infinite series and then sum said derivatives to

obtain the derivative of the entire series.

Definition 22.10. Let A ⊆ R and let RA denote the set of functions from A to R,

RA := {g : A→ R}. (22.11)

A sequence of functions49 from A to R is a function f : N→ RA whose value at n ∈ N is written as

fn. Often, a sequence f is also written as (fn)n∈N or just (fn) for short. For every element x ∈ A,
let evx : RA → R denote the evaluation at x function defined by

RA 3 g 7→ evx(g) := g(x). (22.12)

A sequence f : N→ RA converges pointwise to a function lim f : A→ R, also denoted by lim
n→∞

fn,

iff for all x ∈ A,
(lim f)(x) = lim(evx ◦ f). (22.13)

Note that the expression evx ◦ f is a sequence (of real numbers) because it is the composition

of functions N f−→ RA evx−−→ R. Hence, the limit on the right is the limit of a sequence of numbers

and the limit on the left is a limit of a sequence of functions. The same notation is used because

the two concepts are similar. In terms of the variable n ∈ N, the equality (22.13) can be written

as (
lim
n→∞

fn

)
(x) = lim

n→∞
fn(x). (22.14)

49These functions need not be continuous.

84



Example 22.15. Let A := [0, 1] and consider the sequence f : N→ R[0,1] of functions given by

[0, 1] 3 x 7→ fn(x) := n
√
x. (22.16)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Then (
lim
n→∞

fn

)
(x) =

{
0 if x = 0

1 otherwise
(22.17)

Notice that in this example, the limit of continuous functions need not be continuous.

Going back to Definition 22.13, notice that when A = {∗} is a single point, then a sequence

of functions is precisely a sequence of real numbers in the ordinary sense. To see this a bit more

clearly, it is helpful to express the definition in terms of the definition of convergence of a sequence.

Namely, a sequence f of functions on A converges pointwise to lim f : A → R iff for every ε > 0

and x ∈ A, there exists an Nε,x ∈ N such that∣∣fn(x)− (lim f)(x)
∣∣ < ε ∀ n ≥ Nε,x. (22.18)

The fact that A can have more than a single point allows one to ask for an N that depends on ε

alone or both ε and x. This is analogous to how continuity differs from uniform continuity.

Example 22.19. Consider the case where A is a finite set of points A = {x1, . . . , xk}. Then a

function from A to R is defined by a k-tuple of numbers. Hence, a sequence f : N → RA is a

sequence of k-tuples of numbers. Thus, studying sequences of functions on a finite set with k

elements is equivalent to studying sequences of points in Rk, a topic for next semester. It is a little

unfortunate that in our textbook, we jump from studying ordinary real numbers and sequences

of real numbers all the way to a complicated extreme of sequences of functions before we study

sequences of finite tuples of numbers, something that should logically be in-between the two topics.

Example 22.20. As another special case, consider A := N. Then the set RN is precisely the set

of all sequences of real numbers.

Remark 22.21. In general, for any three sets X, Y, and Z, there is a (natural) bijection

ZX×Y ∼= (ZY )X . (22.22)

After this lecture, it is recommended the student works through problem 1 on HW #6.

85



23 November 15

Definition 23.1. Let A ⊆ R. A sequence f : N → RA of functions on A converges uniformly on

A to a function lim f : A→ R, also denoted by lim
n→∞

fn, iff for every ε > 0, there exists an N ∈ N
such that ∣∣fn(x)− (lim f)(x)

∣∣ < ε ∀ n ≥ N and ∀ x ∈ A. (23.2)

It would be more precise to write Nε instead of N in the definition of uniform convergence

since Nε depends on ε. The following result explains why the same notation lim f is used for both

pointwise and uniform convergence.

Theorem 23.3. Let A ⊆ R and let f : N → RA be a sequence of functions converging uniformly

to a function lim f ∈ RA. Then f converges pointwise to lim f.

Proof. Exercise. �

The examples of pointwise and uniform convergence from Abbott’s book are quite nice, so we

will repeat one of them here.

Example 23.4. Let f : N→ RR be the sequence of functions defined by50

N× R 3 (n, x) 7→ fn(x) :=
x2 + nx

n
. (23.5)

−1 −0.5 0.5 1

−1

−0.5

0.5

1f1

f2

f3

f4

f5

lim f

By the Algebraic limit theorem, for each x ∈ R,

lim
n→∞

fn(x) = lim
n→∞

x2 + nx

n
= lim

n→∞

(
x2

n
+ x

)
= lim

n→∞

(
x2

n

)
+ lim

n→∞
(x) = x. (23.6)

50Take a moment to convince yourself that a function f : N → RA is equivalent to a function, denoted by the

same letter, f : N×A→ R. Also, see Remark 22.21.
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This shows that f converges to idR pointwise, written either as lim f =
pw

idR or simply lim(evx◦f) =

x for all x ∈ R. However, the sequence f does not converge uniformly to idR on R. To see this, fix

ε > 0 and fix x ∈ R. Then ∣∣fn(x)− idR(x)
∣∣ =

∣∣∣∣x2 + nx

n
− x
∣∣∣∣ =

x2

n
. (23.7)

Set Nε,x ∈ N to be large enough so that

Nε,x >
x2

ε
. (23.8)

Then, for this choice, ∣∣fn(x)− idR(x)
∣∣ < ε ∀ n ≥ Nε,x. (23.9)

However, notice that as a function of x, Nε,x is unbounded. Therefore, it will not be possible to

find a single Nε, independent of x for which
∣∣fn(x)− idR(x)

∣∣ < ε for all n ≥ Nε and for all x ∈ R.
However, if the domains of the functions changed to a compact domain, say K, so that f describes

a sequence of functions f : N→ RK , then by the Heine-Borel theorem, K is bounded so that there

exists an M such that K ⊆ [−M,M ]. Set Nε ∈ N to be an integer satisfying

Nε >
M2

ε
. (23.10)

Then, ∣∣fn(x)− idR(x)
∣∣ =

x2

n
≤ M2

n
< ε ∀ n ≥ Nε and ∀ x ∈ K. (23.11)

This shows that for the sequence of functions f : N → RK defined analogously to (23.5) but

restricted to the domain K, lim f =
un

idK .

In your homework, you will prove a more general result about uniform convergence on compact

sets (Dini’s Theorem). However, it should be pointed out that it is not true that if K ⊆ R is

compact and if f : N→ RK is a sequence that converges pointwise to some function lim f, then it

converges uniformly to lim f.

Example 23.12. The sequence in Example 22.15 converges pointwise to (22.16). This convergence

is not uniform because given 1 > ε > 0 and x ∈ [0, 1], one needs to choose Nε,x ∈ N to satisfy

Nε,x >
log(x)

log(1− ε)
(23.13)

and lim
x→0+

Nε,x = ∞. This choice of Nε,x illustrates that the sequence converges pointwise but not

uniformly on [0, 1].51

In fact, the assumptions can be strengthened even more. Consider the following example of

a sequence of functions on a compact domain that consists of continuous functions that converge

pointwise to a continuous function but not uniformly to a continuous function.

51Notice that this happened even though all of the fn’s were continuous on a compact domain and even increasing!

Compare these assumptions to the assumptions in your homework problem.
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Example 23.14. Let c : N→ R be the sequence defined by

N 3 n 7→ cn :=
1

4

(
n2 + 1

n2

)n
n
√
n2 + 1 (23.15)

and let f : N→ R[0,1] be the sequence

N× [0, 1] 3 (n, x) 7→ fn(x) := cn
n
√
x(1− x)n. (23.16)
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Exercise: show that f converges to the zero function pointwise but does not converge to this

function uniformly. This example illustrates that the condition “the sequence f is increasing” in

Dini’s theorem cannot be dropped.

As for sequences of real numbers, we might want to know that a sequence converges even when

we do not have a candidate limit in mind.

Definition 23.17. Let A ⊆ R and let f : N → RA be a sequence of functions. f is a (uniform)

Cauchy sequence iff for every ε > 0, there exists an N ∈ N such that∣∣fn(x)− fm(x)
∣∣ < ε ∀ n,m ≥ N and ∀ x ∈ A. (23.18)

Theorem 23.19. Let A ⊆ R and f : N → RA a sequence of functions. f converges uniformly if

and only if f is a uniform Cauchy sequence.

Proof. You can try to prove this as an exercise, but we will also prove this theorem in much greater

generality next semester. �

Theorem 23.20. [Continuous Limit Theorem] Let A ⊆ R and let f : N → RA be a sequence of

functions converging uniformly to a function lim f ∈ RA. Let c ∈ A. If fn : A → R is continuous

at c for every n ∈ N, then lim f is continuous at c.
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Although this theorem is proved in Abbott, it is important and we present a proof here as well.

Proof. Fix ε > 0. Because f uniformly converges to lim f, there exists an N ∈ N such that∣∣(lim f)(x)− fn(x)
∣∣ < ε

3
∀ n ≥ N and ∀ x ∈ A. (23.21)

For every n ∈ N, fn is continuous at c, so that there exists a δn > 0 such that∣∣fn(x)− fn(c)
∣∣ < ε ∀ x ∈ Vδn(c) ∩ A. (23.22)

In particular, for n = N, set δ := δN . Using these facts,∣∣(lim f)(x)− (lim f)(c)
∣∣ =

∣∣(lim f)(x)− fN(x) + fN(x)− fN(c) + fN(c)− (lim f)(c)
∣∣

≤
∣∣(lim f)(x)− fN(x)

∣∣+
∣∣fN(x)− fN(c)

∣∣+
∣∣fN(c)− (lim f)(c)

∣∣
by the triangle inequality

<
ε

3
+
ε

3
+
ε

3
by (23.21), (23.22), and (23.21), respectively

= ε

(23.23)

for all x ∈ Vδ(c) ∩ A. Therefore, lim f is continuous at c ∈ A. �

Example 23.24. We already provided an example where the theorem is false if the sequence f

only converges pointwise to lim f (see Example 22.15).

Exercise 23.25. Prove or disprove: Let A ⊆ R and let f : N → RA be a sequence of functions

converging uniformly to a function lim f ∈ RA. If fn : A → R is uniformly continuous for every

n ∈ N, then lim f uniformly continuous.

Exercise 23.26. In a similar vein to the previous exercise, see Exercise 6.2.6 in [2].

Remark 23.27. The Continuous Limit Theorem can be phrased in the following diagramatic way,

but to do so, we need to introduce some notation. Let C(A,R) be the set of continuous functions

on A, let (RA)Npw denote the set of sequences of functions with a well-defined pointwise limit, and

let (RA)Nun denote the subset of (RA)Npw for which the limit converges to a function uniformly on

A. Let

(C(A,R)N)pw := C(A,R) ∩ (RA)Npw & (C(A,R)N)un := C(A,R) ∩ (RA)Nun (23.28)

be the set of sequences of continuous functions on A for which the limit is a (well-defined) function

on A and for which the sequence converges uniformly, respectively. The pointwise limit of a

sequence of functions on A can therefore be described as a function

(RA)Npw
lim−→ RA. (23.29)

This defines the function lim on all subsets of (RA)Npw including (RA)Nun, (C(A,R)N)pw, and (C(A,R)N)un.

However, in each case, all we know is that the codomain of the function lim is always RA. The
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Continuity Limit Theorem states that there exists a unique lift l̃im : (C(A,R)N)un → C(A,R), i.e.

the diagram

(C(A,R)N)un

C(A,R)

RA

l̃im

??

lim
//

� o

��
(23.30)

commutes. It is common to say that the function lim factors through C(A,R). We, however, abuse

notation slightly, and denote the function l̃im simply by lim .

Let A ⊆ R. Given a sequence f : N→ RA of differentiable functions on A, it is not always true

that lim f is differentiable even if the sequence f converges to lim f uniformly (compare this to

to the Continuous Limit Theorem above). The following example illustrates this.

Example 23.31. Let h : N→ R[−1,1] be the sequence of functions defined by

N× [−1, 1] 3 (n, x) 7→ hn(x) := x1+ 1
2n−1 . (23.32)
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h7

limh

Then each of the hn are differentiable, converge to limh uniformly, but limh is not differentiable

at 0.

However, an additional assumption guarantees that the limiting function will be differentiable.

Theorem 23.33. [Differentiable Limit Theorem] Let a, b ∈ R with a < b and let f : N→ R[a,b] be

a sequence of functions satisfying the conditions

i) f converges to lim f pointwise,

ii) fn is differentiable for all n ∈ N, and

iii) the sequence f ′ : N→ R[a,b] (defined by (f ′)n := f ′n) converges to a function lim f ′ uniformly.
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Then lim f is differentiable and (lim f)′ = lim f ′.

Proof. Fix c ∈ [a, b] and ε > 0.52 First, since f ′ converges to lim f ′ uniformly, it converges pointwise

by Theorem 23.3. Hence, there exists an N1 ∈ N such that∣∣f ′n(c)− (lim f ′)(c)
∣∣ < ε

3
∀ n ≥ N1. (23.34)

Since f ′ converges to to lim f ′ uniformly, Theorem 23.19 asserts that there exists an N2 ∈ N such

that ∣∣f ′m(x)− f ′n(x)
∣∣ < ε

3
∀ n,m ≥ N2 and ∀ x ∈ [a, b]. (23.35)

Set N := max{N1, N2}. Since each fn is differentiable at c, fN is differentiable as well so that there

exists a δ > 0 such that∣∣∣∣fN(x)− fN(c)

x− c
− f ′N(c)

∣∣∣∣ < ε

3
∀ x ∈ Vδ(c) ∩ [a, b] \ {c}. (23.36)

Now, notice that because the absolute value function is continuous and because f converges to

lim f pointwise,

lim
m→∞

∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ =

∣∣∣∣(lim f)(x)− (lim f)(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ (23.37)

for all x ∈ Vδ(c) ∩ [a, b] \ {c} and all n ∈ N. However, before taking this limit, set

F := fm − fn, (23.38)

and rewrite the left-hand-side as∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ =

∣∣∣∣(fm − fn)(x)− (fm − fn)(c)

x− c

∣∣∣∣ =

∣∣∣∣F (x)− F (c)

x− c

∣∣∣∣ (23.39)

for all x ∈ Vδ(c) ∩ [a, b] \ {c} and all m,n ∈ N. Note that F : [a, b] → R is differentiable by the

Algebraic Differentiability Theorem (Theorem 20.38). In particular, restricting F to [x, c] or [c, x]

depending on whether x < c or c < x, respectively, the Mean Value Theorem (Theorem 21.10)

holds for F so that there exists an α ∈ (x, c) or α ∈ (c, x), respectively, satisfying

F (x)− F (c)

x− c
= F ′(α). (23.40)

Hence, (23.39) becomes∣∣∣∣F (x)− F (c)

x− c

∣∣∣∣ =
∣∣F ′(α)

∣∣ =
∣∣f ′m(α)− f ′n(α)

∣∣ < ε

3
∀ n,m ≥ N (23.41)

52The goal is to show there exists a δ > 0 such that∣∣∣∣ (lim f)(x)− (lim f)(c)

x− c
− (lim f ′)(c)

∣∣∣∣ < ε

for all x ∈ Vδ(c) ∩ [a, b] \ {c}. The idea of the proof will actually be similar to the proof of the Continuity Limit

Theorem.
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by the inequality (23.35). Since such an α can be found for any pair of distinct elements x and c,∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ < ε

3
∀ x ∈ Vδ(c) ∩ [a, b] \ {c} and n ≥ N. (23.42)

Then, by the Order Limit Theorem (Theorem 6.15) and (23.37),∣∣∣∣(lim f)(x)− (lim f)(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ ε

3
∀ x ∈ Vδ(c) ∩ [a, b] \ {c} and n ≥ N. (23.43)

Using the triangle inequality and the inequalities (23.37), (23.36), and (23.34),∣∣∣∣(lim f)(x)− (lim f)(c)

x− c
− (lim f ′)(c)

∣∣∣∣ ≤ ∣∣∣∣(lim f)(x)− (lim f)(c)

x− c
− fN(x)− fN(c)

x− c

∣∣∣∣
+

∣∣∣∣fN(x)− fN(c)

x− c
− f ′N(c)

∣∣∣∣+
∣∣f ′N(c)− (lim f ′)(c)

∣∣
<
ε

3
+
ε

3
+
ε

3

= ε ∀ x ∈ Vδ(c) ∩ [a, b] \ {c}.

(23.44)

Since this is true for all c ∈ [a, b], it follows that (lim f)′ = lim f ′. �

Example 23.45. Let f : N→ RR be the sequence defined by

N× R 3 (n, x) 7→ fn(x) :=
x

1 + nx2
. (23.46)
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For each x ∈ R,
lim(evx ◦ f) = 0. (23.47)

Thus, lim f =
pw

0. In fact, this convergence is uniform. To see this, first notice by the Algebraic

Differentiability Theorem (the quotient rule in Theorem 20.38),

N× R 3 (n, x) 7→ f ′n(x) =
1 + nx2 − 2nx2

(1 + nx2)2
=

1− nx2

(1 + nx2)2
. (23.48)
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The zero’s of this function provide sequences y : N→ R and z : N→ R that describe the minima

and maxima of the sequence f. Namely, for each n ∈ N, set

yn := − 1√
n

& zn :=
1√
n
. (23.49)

Then yn is the point at which fn achieves its minimum and zn is the point at which fn achieves

its maximum. Furthermore, at these points, the value of fn is given by

fn(yn) = − 1

2
√
n

& fn(zn) =
1

2
√
n

(23.50)

so that ∣∣fn(x)
∣∣ ≤ 1

2
√
n

∀ x ∈ R. (23.51)

Therefore, to see that lim f =
un

0, fix ε > 0. Set N ∈ N to be a natural number satisfying

N >
1

4ε2
. (23.52)

Then, with this choice ∣∣fn(x)
∣∣ ≤ 1

2
√
n
< ε ∀ n ≥ N and ∀ x ∈ R. (23.53)

However, notice that

(lim f ′)(x) =
pw

{
1 if x = 0

0 otherwise
(23.54)

whereas

(lim f)′(x) = 0 ∀ x ∈ R. (23.55)

This does not contradict the Differentiable Limit Theorem (Theorem 23.33) because the sequence

f ′ does not converge to the function in (23.54) uniformly.
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Example 23.56. See Exercise 6.3.4 in [2] for another counter-example to this theorem when the

assumption that f ′ converges to lim f ′ uniformly is dropped but it is assumed that f converges to

lim f uniformly.

Remark 23.57. Just as the Continuity Limit Theorem can be described diagrammatically, so can

the Differentiable Limit Theorem. Again, for this, we need some notation. Let Diff1(A,R) denote

the set of differentiable functions on A. Note that Diff1(A,R) ⊆ C(A,R). Let

(Diff1(A,R)N)pw := Diff1(A,R)N∩(RA)Npw & (Diff1(A,R)N)un := Diff1(A,R)N∩(RA)Nun. (23.58)

In addition, let D : Diff1(A,R) → RA denote the function that assigns the derivative to any

differentiable function. Similarly, let DN : Diff1(A,R)N → (RA)N denote the function that assigns

the sequence of derivatives to any sequence of differentiable functions. Finally, let

(Diff1(A,R)N)pw := Diff1(A,R)N ∩ (RA)Npw

(Diff1(A,R)N)un := Diff1(A,R)N ∩ (RA)Nun

(Diff1(A,R)N)D-pw :=
{
f ∈ Diff1(A,R)N : DNf ∈ (RA)Npw

}
(Diff1(A,R)N)D-un :=

{
f ∈ Diff1(A,R)N : DNf ∈ (RA)Nun

} (23.59)

and denote intersections of these appropriately with commas. So for example,

(Diff1(A,R)N)pw,D-un = (Diff1(A,R)N)D-un ∩ (RA)Npw (23.60)

denotes the set of sequences of differentiable functions that converge pointwise and whose associ-

ated derivative sequences converge uniformly. The Differentiable Limit Theorem then says that

there exists a unique lift l̃im : (Diff1(A,R)N)pw,D-un → Diff1(A,R) such that the diagrams

(Diff1(A,R)N)pw,D-un

Diff1(A,R)

RA

l̃im
;;

lim
//

� q

##
(23.61)

and

(Diff1(A,R)N)pw,D-un Diff1(A,R)

(RA)Nun RA

l̃im //

DN

��
D

��

lim
//

(23.62)

both commute. It is common to say that the function lim factors through Diff1(A,R). We, however,

abuse notation slightly, and denote the function l̃im simply by lim .

After this lecture, it is recommended the student works through problems 2, 3, and 4 on HW

#6.
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24 November 17

Definition 24.1. Let A ⊆ R and let f : N→ RA be a sequence of functions. The partial sums of

f is the sequence of functions S : N→ RA defined by

N 3 n 7→
n∑

m=1

fm. (24.2)

Lemma 24.3. Let A ⊆ R and let f : N→ RA be a sequence of functions.

(a) If fn is continuous for every n ∈ N, then the partial sums are all continuous.

(b) If fn is uniformly continuous on A for every n ∈ N, then the partial sums are all uniformly

continuous on A.

(c) If fn is differentiable for every n ∈ N, then the partial sums are all differentiable and

S ′n =
n∑

m=1

f ′m (24.4)

for all n ∈ N.

Proof. Exercise. �

Since the partial sums themselves are sequences, the results from last lecture immediately imply

the following facts.

Theorem 24.5. [Term-by-term Continuity Theorem] Let A ⊆ R and let f : N→ RA be a sequence

of functions. If fn is continuous for every n ∈ N and the partial sums, S, of f converges uniformly

to limS, then limS is continuous on A.

Proof. This follows from Lemma 24.3 and the Continuous Limit Theorem (Theorem 23.20). �

Theorem 24.6. [Term-by-term Differentiability Theorem] Let a, b ∈ R with a < b. Set A := [a, b].

Let f : N → RA be a sequence of differentiable functions on A and let S denote the associated

sequence of partial sums of f. Suppose that f and S satisfy

i) S converges to limS pointwise,

ii) fn is differentiable for all n ∈ N, and

iii) the sequence S ′ : N→ R[a,b] (defined by (S ′)n := S ′n) converges uniformly to a function limS ′.

Then limS is differentiable and (limS)′ = limS ′.

Proof. This follows from Lemma 24.3, the fact that

S ′n =
n∑

m=1

f ′m (24.7)

by the Algebraic Differentiability Theorem (Theorem 20.38), and the Differentiable Limit Theorem

(Theorem 23.33). �
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Theorem 24.8. [Cauchy Criterion for Uniform Convergence of Series] Let A ⊆ R and let f :

N → RA be a sequence of functions on A. The series
∑∞

n=1 fn converges uniformly on A if and

only if for every ε > 0, there exists an N ∈ N such that∣∣fm+1(x) + fm+2(x) + fm+3(x) + · · ·+ fn(x)
∣∣ < ε ∀ n > m ≥ N and ∀ x ∈ A. (24.9)

Proof. This follows from Theorem 23.19 applied to the partial sums associated to f. �

Theorem 24.10 (Weierstrass M-test). Let A ⊆ R and let f : N→ RA be a sequence of functions

on A. Suppose that for each n ∈ N, there exists an Mn ∈ R such that∣∣fn(x)
∣∣ ≤Mn ∀ x ∈ A. (24.11)

If
∑∞

n=1Mn converges, then
∑∞

n=1 fn converges uniformly on A.

Proof. Notice that for each x ∈ A, the partial sums of the sequence of numbers evx ◦ f satisfy

N 3 N 7→
N∑
n=1

∣∣fn(x)
∣∣ ≤ N∑

n=1

Mn. (24.12)

By the Comparison Test, this shows that

∞∑
n=1

∣∣fn(x)
∣∣ ≤ ∞∑

n=1

Mn (24.13)

showing that
∑∞

n=1 fn(x) converges (in fact, absolutely) for each x ∈ A. In particular, the sequence

of partial sums is Cauchy. Hence, for any ε > 0, there exists an N ∈ N such that∣∣fm+1(x) + fm+2(x) + fm+3(x) + · · ·+ fn(x)
∣∣ < ε ∀ n ≥ m ≥ N and ∀ x ∈ A. (24.14)

Thus, by the Cauchy Criterion for Uniform Convergence of Series (Theorem 24.8),
∑∞

n=1 fn con-

verges uniformly on A. �

Example 24.15. We can use the Weierstrass M-test to prove that the sequence of partial sums

gn :=
∑n−1

m=0 hm from Example 22.1 converges uniformly to the function g : [0, 2] → R defined

in that same example. As was shown, |hn(x)| ≤ 1
2n

for all x ∈ [0, 2]. Since
∑∞

m=0
1

2m
= 2, the

Weirstrass M-test guarantees that
∑∞

m=0 hm converges uniformly on [0, 2]. Unfortunately, nothing

yet can be said about the derivatives because hn is not differentiable for any n ∈ N.

Exercise 24.16. Let R ∈ (0,∞) and set A := [−R,R]. Prove that the functions exp, sin, cos :

A→ R defined on x ∈ A by

exp(x) :=
∞∑
n=0

xn

n!
, sin(x) :=

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, & cos(x) :=

∞∑
n=0

(−1)nx2n

(2n)!
(24.17)

are all continuous and differentiable on A. Furthermore, show that

exp′ = exp, sin′ = cos, & cos′ = − sin . (24.18)
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Example 24.19. A better example of a sequence of functions whose associated partial sums

converge to a function that is continuous but not differentiable is given by the following. Let

g : N→ RR be the sequence defined by

N× R 3 (n, x) 7→ gn(x) :=
cos(2n−1x)

2n−1
(24.20)
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Some of the first few partial sums S associated to g are depicted by
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with limS looking something like
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−6 −4 −2 2 4 6

−1

1

2
limS

though of course this graph depicts only an approximation. Because cos is bounded by 1, the

Weierstrass M-Test applies by setting Mn := 1
2n
. Thus, S converges to limS uniformly and limS

is continuous on R. As for the differentiability (or lack thereof) of S and limS, notice that

g′n(x) = − sin(2n−1x) (24.21)

by the Chain rule and Exercise 24.16. Thus, by the Algebraic Differentiability Theorem,

S ′n(x) = −
n∑

m=1

sin(2m−1x). (24.22)

There are three conditions that must be satisfied in Theorem 24.6. The one that fails for this

sequence g and S is the third one. Namely, it is not true that S ′ converges to a function limS ′

uniformly. This can be seen as follows. First, notice that S ′n is continuous for each n ∈ N. If S ′

were to converge to limS ′ uniformly, Theorem 24.5 would imply that limS ′ (if it is even defined)

is continuous. The first three such functions in the derivative sequence look like
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1

S′
2

S′
3

while the fifth term already looks incredibly sporadic

−6 −4 −2 2 4 6

−2

2

S′
5

Furthermore, Theorem 24.6 would require

(limS)′(x) = limS ′(x) (24.23)

for all x ∈ R, which in particular, implies that limS ′(x) must be defined for all x ∈ R. However,

to see that the function limS ′ is not differentiable at 0, consider the two sequences y, z : N → R
given by sending n ∈ N to

yn := − π

2n
& zn :=

π

2n
. (24.24)
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Both of these sequences satisfy lim y = 0 = lim z. Now, consider the associated sequences Y :=

(limS ′) ◦ y, Z := (limS ′) ◦ z : N→ R given by

N 3 n 7→ Yn := (limS ′)(yn) = lim
N→∞

N∑
m=1

sin
(
2m−(n+1)π

)
=

n∑
m=1

sin
(
2m−(n+1)π

)
(24.25)

and

N 3 n 7→ Zn := (limS ′)(zn) = lim
N→∞

(
−

N∑
m=1

sin
(
2m−(n+1)π

))
= −

n∑
m=1

sin
(
2m−(n+1)π

)
. (24.26)

Notice that

Yn > 0 > Zn ∀ n ∈ N (24.27)

and Y is a strictly increasing sequence while Z is a strictly decreasing sequence. Therefore, we

have exhibited two sequences y and z converging to 0 but satisfying

lim
(
(limS ′)◦y

)
> 1 > 0 = (limS ′)(lim y) = (limS ′)(lim z) = 0 > −1 > lim

(
(limS ′)◦z

)
. (24.28)

This violates the necessary condition that the function limS ′ be continuous.

Example 24.29. The present example illustrates that not every differentiable function has a

continuous derivative. We began this discussion in Example 22.8 with the function f : R → R
defined by

R 3 x 7→ g(x) :=

{
0 if x = 0

x2 sin
(

1
x

)
otherwise

}
=

{
0 if x = 0∑∞

n=0
(−1)nx2n+3

(2n+1)!
otherwise

(24.30)

−0.4 −0.2 0.2 0.4

−0.1

0.1

g

By Theorem 24.6, the product rule, and Exercise 24.16,

g′(x) =

{
0 if x = 0

2x sin
(

1
x

)
− cos

(
1
x

)
otherwise

(24.31)
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The function g′ is discontinuous at 0.One can see this by considering the two sequences a, b : N→ R
assigning n ∈ N to

an :=
1

2nπ
& bn :=

1

(2n+ 1)π
(24.32)

since lim a = 0 = lim b but

lim
n→∞

g′(an) = −1 6= 1 = lim
n→∞

g′(bn). (24.33)

Recall our earlier results on the different notions of continuity and differentiability for a function

f : [a, b]→ R. f differentiable ⇒ f Lipschitz ⇒ f uniformly continuous ⇒ continuous. Today, we

showed that there exist continuous functions that are differentiable nowhere. But what if we took

a uniformly continuous function? Namely, does there exist a uniformly continuous function that

is nowhere differentiable? What if we took a Lipschitz function? It turns out that if f is Lipschitz

continuous, then f is differentiable almost everywhere. Here, the phrase “almost everywhere” has

a precise mathematical meaning in terms of measure theory [7].

Definition 24.34. A subset E ⊆ R has measure zero if for any ε > 0, there exists an at most

countable cover {In = [an, bn]}n∈S⊆N of E consisting of closed intervals such that∑
n∈S

(bn − an) < ε. (24.35)

Example 24.36. Any at most countable subset of R has measure zero. In particular, Q has

measure zero. The proof of this follows from the calculations in Example 10.9.

Theorem 24.37 (Rademacher’s Theorem). Let f : [a, b] → R be a Lipschitz continuous. Then

Df , the set of discontinuities of f, has measure zero.

Proof. Look elsewhere. �

After this lecture, it is recommended the student works through problems 5, 6, and 7 on HW

#6.
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25 November 29

In Exercise 24.16, we introduced examples of what are known as power series. Unfortunately, I

cannot find a precise enough definition of a power series in our textbook, so I have attempted to

provide you with one below, first introducing some notation, and then providing a definition.

Definition 25.1. Let p : N → RR be the sequence of functions sending n ∈ N ∪ {0} to the

monomial pn : R→ R defined by53

R 3 x 7→ pn(x) := xn. (25.2)

Let pn also denote the restriction of pn to A for any subset A ⊆ R. Let a : N ∪ {0} → R be a

(shifted) sequence of real numbers. The power series associated to the sequence a consists of the

subset A ⊆ R defined by

A :=

{
x ∈ R :

∣∣∣∣∣
∞∑
n=0

anx
n

∣∣∣∣∣ <∞
}

(25.3)

together with the function a · p : A→ R defined by

A 3 x 7→ (a · p)(x) :=
∞∑
n=0

anx
n. (25.4)

An immediate question arises from this definition. Given two distinct (shifted) sequences a and

b, is it possible for the associated power series to be the same? Before we answer this question,

let us first analyze some facts about the domain A associated to the power series associated to a

fixed sequence.

Theorem 25.5. Let a : N ∪ {0} → R be a (shifted) sequence and let A be the domain of the

associated power series. Let x0 ∈ A. Then

∞∑
n=0

anx
n (25.6)

converges absolutely for all x ∈ R satisfying |x| < |x0|. In particular,
(
− |x0|, |x0|

)
⊆ A.

There are two surprising statements being made here. The first statement says that if x0 ∈ A,
then the entire open interval

(
−|x0|, |x0|

)
is also in A. The second statement is that for points x in

this interval
(
−|x0|, |x0|

)
, the series not only converges, but it converges absolutely! Although this

theorem is proved in Abbott, we’ll present the proof here because I find this result quite surprising.

Proof. First note that if x0 = 0, the claim is vacuously true since the interval
(
− |x0|, |x0|

)
is

empty. Hence, consider the case x0 6= 0. The sequence N ∪ {0} 3 n 7→ anx
n
0 is bounded since the

series converges at x0. Let M > 0 denote such a bound, i.e. |anxn0 | ≤ M for all n ∈ N ∪ {0}. Let

x ∈
(
− |x0|, |x0|

)
. Then,

|anxn| = |anxn0 |
∣∣∣∣ xx0

∣∣∣∣n ≤M

∣∣∣∣ xx0

∣∣∣∣n . (25.7)

53I contemplated using the notation 1/n
√

instead of pn as an offered suggestion by Ralf Schiffler. I might do

this in the future, but for now, let’s use pn.
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Hence,
∞∑
n=0

|anxn| ≤
∞∑
n=0

M

∣∣∣∣ xx0

∣∣∣∣n = M
∞∑
n=0

∣∣∣∣ xx0

∣∣∣∣n = M


∣∣∣ xx0 ∣∣∣

1−
∣∣∣ xx0 ∣∣∣

 <∞. (25.8)

Therefore,
∑∞

n=0 anx
n converges absolutely for all x ∈

(
− |x0|, |x0|

)
. �

Definition 25.9. Let a : N ∪ {0} → R be a (shifted) sequence and let A denote the domain of

the associated power series a · p. The radius of convergence of the power series associated to a is

either a real number R ∈ R satisfying the two conditions

(a) (a · p)(x) converges absolutely for all x ∈ (−R,R) and

(b) for all ε > 0, the interval (−R− ε, R + ε) is not contained in A

or is infinite.

Hence, the previous theorem says that if a nonzero number R is in the domain of a power

series, then that domain automatically contains an interval of the form (−R,R), where R is the

radius of convergence of that power series.

Exercise 25.10. Let a, b : N → R be two sequences with associated domains with a common

nonzero radius of convergence R > 0. Then, a = b if and only if the associated power series are

equal on (−R,R), i.e. if and only if

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n ∀ x ∈ (−R,R). (25.11)

There are several results that describe whether the domain extends beyond the radius of con-

vergence if the radius is finite and what type of convergence holds on these domains. However,

the only possibilities of such an extension are to include the limit points of these intervals.

Theorem 25.12. Let a : N ∪ {0} → R be a sequence and let A ⊆ R be the domain of the power

series associated to a. Let x0 ∈ A be a point such that (a · p)(x0) converges absolutely. Then the

partial sums of a · p converges to a · p uniformly on
[
− |x0|, |x0|

]
. In particular, a · p is continuous

on
[
− |x0|, |x0|

]
.

Proof. Let x ∈
[
− |x0|, |x0|

]
and set Mn := |anxn0 | for each n ∈ N ∪ {0}. Then

|anxn| ≤Mn ∀ n ∈ N ∪ {0} (25.13)

and
∞∑
n=0

Mn <∞ (25.14)

by the assumption that
∑∞

n=0 anx
n
0 converges absolutely. Hence, by the Weierstrass M-test, the

partial sums of a · p converges uniformly to the function a · p on
[
− |x0|, |x0|

]
. Continuity of a · p

on
[
− |x0|, |x0|

]
follows from the Term-by-term Continuity Theorem because the partial sums of

a · p converge uniformly to a · p on
[
− |x0|, |x0|

]
and the partial sums are continuous since they

are all polynomials. �
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Referring to Theorem 25.12, one can remove the condition of absolute convergence of a power

series at some point but the domain on which uniform convergence holds might not extend in both

directions.

Theorem 25.15 (Abel’s Theorem). Let A ⊆ R and let a : N∪{0} → R and let x0 ∈ A be positive

and such that the series (a · p)(x0) converges (not necessarily absolutely). Then the partial sums of

a · p converges uniformly to a · p on
[
0, x0

]
. In particular, a · p is continuous on

[
0, x0

]
. Similarly,

if x0 is negative, and (a · p)(x0) converges, then the partial sums of a · p converges uniformly to

a · p on
[
x0, 0

]
and a · p is continuous on

[
x0, 0

]
.

Proof. See Abbott. �

Example 25.16. Consider the (shifted) sequence

N ∪ {0} 3 n 7→ an :=

{
0 if n = 0
1
n

otherwise
(25.17)

The domain of the associated power series is [−1, 1). Notice that 1 is not contained in this domain

even though −1 is. This is because the series
∑∞

n=1
(−1)n+1

n
does not converge absolutely.

Theorem 25.18. Let a : N ∪ {0} → R be a sequence and let A be the domain of the associated

power series. For any compact set K ⊆ A, the partial sums of a · p converge uniformly to a · p on

K. In particular, a · p is continuous on all compact subsets of A.

Proof. See Abbott. �

The above statements are regarding the nature of continuity of power series. Below is a result

on differentiability of power series.

Theorem 25.19. Let a : N ∪ {0} → R be a sequence and let A be the domain of the associated

power series. Then a · p is differentiable on any open interval (−R,R) ⊆ A and the derivative is

given by

(a · p)′(x) =
∞∑
n=1

nanx
n−1 ∀ x ∈ (−R,R). (25.20)

Furthermore, a · p is infinitely differentiable on (−R,R) and

(a · p)(n)(x) =
∞∑
m=n

m!

(m− n− 1)!
amx

m−n ∀ x ∈ (−R,R), (25.21)

where (a · p)(n) denotes the n-th derivative of a · p.

Proof. See Abbott. �

Power series have a surprising relation among the coefficients defining them.

Theorem 25.22 (Taylor’s formula). Let a : N ∪ {0} → R be a sequence with associated power

series a · p defined on some interval (possibly infinite or semi-infinite) A ⊆ R containing 0. Then

an =
(a · p)(n)(0)

n!
. (25.23)
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Proof. By Theorem 25.19,

(a · p)(n)(0)

n!
=

1

n!

(
∞∑
m=n

m!

(m− n− 1)!
ampm−n

)
(0)

=
1

n!

∞∑
m=n

m!

(m− n− 1)!
ampm−n(0)

=
1

n!

∞∑
m=n

m!

(m− n− 1)!
amδmn

=
1

n!

n!

(n− n− 1)!
an

= an,

(25.24)

where δ is the Kronecker-delta function

(N ∪ {0})× (N ∪ {0}) 3 (m,n) 7→ δmn :=

{
1 if m = n

0 otherwise
(25.25)

�

This theorem motivates the following definition.

Definition 25.26. Let A ⊆ R be a subset (containing some interval centered at 0) and let

f : A → R be a function that is infinitely differentiable. The Taylor series of f centered at 0 is

the power series associated to the sequence, called Taylor coefficients,

N ∪ {0} 3 n 7→ f (n)(0)

n!
(25.27)

where f (n) denotes the n-th derivative of f (f (0) := f).

The previous theorem begs the question whether or not arbitrary infinitely differentiable func-

tions f : A → R can be represented by their Taylor series. If true, this would be somewhat

surprising. The reason is because to specify a function requires a specification of |A| many num-

bers (here |A| is the cardinality of A). However, as we’ve learned, continuous functions have some

constraints and so it might seem that less data captures their information. Infinitely differentiable

functions are even more restricted and so one might ask if their information is completely cap-

tured by their Taylor coefficients. The answer to this suspicion is “no” as the following example

illustrates.

Example 25.28. Consider the function

R 3 x 7→ f(x) :=

{
0 if x = 0

e−1/x2 otherwise
(25.29)

Then the Taylor coefficients of f at 0 all vanish, f (n)(0) = 0 for all n ∈ N ∪ {0}. However, the

function f is not identically zero on any open interval around 0 showing that the Taylor series

does not converge to f in any such neighborhood.
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Nevertheless, the following theorem provides an error bound on how well a sufficiently differ-

entiable function is approximated by its associated Taylor series.

Theorem 25.30 (Lagrange’s Remainder Theorem). Let R > 0 and let f : (−R,R) → R be a

function that is differentiable N + 1 times with N ∈ N. Set

{0, 1, . . . , N} 3 n 7→ an :=
f (n)(0)

n!
, (25.31)

define the function SN : (−R,R)→ R by

(−R,R) 3 x 7→ SN(x) :=
N∑
n=0

anx
n, (25.32)

and the function EN : (−R,R)→ R by

EN := f − SN . (25.33)

Then, for any x ∈ (−R,R) \ {0}, there exists a c ∈ (−|x|, |x|) such that

EN(x) =
f (N+1)(c)

(N + 1)!
xN+1 (25.34)

for that particular value of x.

Proof. See Abbott. �

We will not prove this theorem, and instead we will aim to understand what it is saying. Given

any differentiable function f, the theorem says that the value of f at some point x ∈ (−R,R)\{0}
can be expressed in terms of two quantities. The first is a polynomial evaluated at x all of whose

data comes from the (successive) derivatives of f at a single point, namely 0. This is “infinitesimal

data.” The second quantity is essentially what is left over. However, it, too, can be expressed as

a polynomial of the next degree. This is no longer infinitesimal since the point c could in general

be larger than 0. The importance of the term EN is not so much that it is the difference, but the

actual expression for it in terms of c ∈ (−|x|, |x|) illustrates that if the higher order derivatives of

f are not unreasonably large, then the error term is very small.

Example 25.35. Consider the function f : (−1,∞)→ R given by

(−1,∞) 3 x 7→ f(x) := ln(x+ 1). (25.36)

The derivative of the logarithm function is obtained by the inverse function theorem from the

previous problem set. The first few approximations using only the polynomial terms associated to

the derivatives of f at 0 is given on the graph on the left while the difference between these Taylor

approximations from the partial sums Sn and the actual function f is drawn on the graph on the

right.
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As the graph on the right indicates, the error term approaches zero as n increases. We can

try to provide a bound for this error term using Lagrange’s Remainder Theorem. Note that for

N ∈ N ∪ {0},

f (N+1)(x) =
(−1)NN !

(x+ 1)N+1
(25.37)

for all x ∈ (−1, 1). Hence, fix x ∈ (−1, 1). Then, for all c ∈ (−|x|, |x|),∣∣f (N+1)(c)
∣∣ =

N !

(c+ 1)N+1
(25.38)

so that ∣∣∣∣f (N+1)(c)

(N + 1)!
xN+1

∣∣∣∣ ≤ N !

(N + 1)!

(
|x|
c+ 1

)N+1

=
1

N + 1

(
|x|
c+ 1

)N+1

. (25.39)

If c were arbitrary, this could tend to infinity, so a blind estimate will not help (take for example

x = −0.9 and c = −0.8). Therefore, let us instead restrict attention to x ∈
(
−1

2
, 1

2

)
. In this case,

|x|
c+ 1

< 1 (25.40)

so that

lim
N→∞

∣∣EN(x)
∣∣ = 0. (25.41)

Lagrange’s Remainder Theorem is a useful pointwise result about the value of a function at

a point x. However, the point c depends on x so that the theorem does not say much about

the relationship between the entire function f and polynomials. Furthermore, as we saw in the

previous example, it has its limitations. The Weierstrass approximation theorem provides a much

stronger relationship.

Theorem 25.42 (Weierstrass Approximation Theorem). Let a, b ∈ R with a < b and let f :

[a, b]→ R be continuous. For any ε > 0, there exists a polynomial p on [a, b] satisfying∣∣f(x)− p(x)
∣∣ < ε ∀ x ∈ [a, b]. (25.43)

In other words, there exists a sequence of polynomials on [a, b] that converges uniformly to f.

After this lecture, it is recommended the student works through problems 1 and 2 on HW #7.
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26 December 1

Read Abbott for fantastic motivation and history. One important message I would like to em-

phasize is the following. Historically, according to Abbott, the integral was thought of in terms

of anti-derivatives. However, it was also noticed that such anti-derivatives are closely related to

areas and volumes. Conceptually, a breakthrough was made when an alternative definition of the

integral was sought out using the perspective of calculating areas and volumes. This perspective

led to the notion of the Riemann integral and to several other kinds of integrals as well such as

the Riemann-Stieltjes integral and the Lebesgue integral in increasing order of generality.54 The

Lebesgue integral is particularly important as it focused on a deeper question—what is the mean-

ing of measure? How does one measure area, volume, and so on? What is the “length” of the

rational numbers? As we saw earlier, we found that the rationals have measure zero. We also saw

that the Cantor set has measure zero as well. We will not pursue the direction of measure here

and will instead be content with focusing on specific kinds of measurable subsets of R, namely,

intervals. This perspective has its drawbacks in that Lebesgue integrable functions are more robust

and have a characterization in terms of linear functionals on the space of all functions. However,

it is visually simpler to understand and a good first step in the direction towards more general

integrals. The following consists of several important definitions used for integrating functions.

Definition 26.1. Let a, b ∈ R with a < b. A finite partition P of [a, b] consists of a a finite distinct

ordered set of points x0, x1, . . . , xn−1, xn, where n ∈ N, such that

a = x0 < x1 < · · · < xn−1 < xn = b. (26.2)

Let f : [a, b]→ R be a bounded function. The lower sum of f with respect to P is

L[f ;P ] :=
n∑
k=1

(xk − xk−1) inf
x∈[xk−1,xk]

{f(x)}. (26.3)

The upper sum of f with respect to P is

U [f ;P ] :=
n∑
k=1

(xk − xk−1) sup
x∈[xk−1,xk]

{f(x)}. (26.4)

f

bx4x3x2x1a

Lower sum
f

bx4x3x2x1a

Upper sum

54You might think that it is difficult to do research in mathematics since there is so much to learn. However, if

you ask the right question and view something that seems to be pretty well-understood from a different perspective

that has never been done before, you could discover an entire new field of mathematics. Therefore, ask questions

until you are completely satisfied. And do not be afraid to question traditional material, especially if you can back

up your confusion with sound logic.
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Note that the bounded condition on f is crucial. Indeed, there exist unbounded functions on

closed intervals (remember, the functions we are considering need not be continuous).

Example 26.5. Let f : [0, 1]→ R be the function defined by

[0, 1] 3 x 7→ f(x) :=


1
x

if x = 1
2n

for some n ∈ N
− 1
x

if x = 1
2n+1

for some n ∈ N
0 otherwise

(26.6)

Then f is unbounded from above and below. In fact, since every partition of [0, 1] must have some

interval containing 0, all upper and lower sums for all partitions are undefined.

Definition 26.7. Let P and Q be partitions of an interval [a, b]. Q is a refinement of P, written

P ≤ Q, if Q contains all the points of P. Let Pba denote the set of all partitions of [a, b].

Definition 26.8. Let P,Q ∈ Pba. A common refinement of P and Q is a partition P ∨ Q ∈ Pba
satisfying

i) P ≤ P ∨Q and Q ≤ P ∨Q and

ii) for any other partition R ∈ Pba satisfying P ≤ R and Q ≤ R, then P ∨Q ≤ R.

It can be shown that common refinements exist and are unique. In other words, the common

refinement of P and Q is the smallest partition that contains both P and Q.

Lemma 26.9. Let a, b ∈ R with a < b and let f : [a, b]→ R be a bounded function.

(a) Refinement ≤ is a partial order on Pba. This means

i) if P,Q ∈ Pba with P ≤ Q and Q ≤ P, then P = Q, and

ii) if P,Q,R ∈ Pba with P ≤ Q and Q ≤ R, then P ≤ R.

(b) If P,Q ∈ Pba and P ≤ Q, then L[f ;P ] ≤ L[f ;Q] and U [f ;P ] ≥ U [f ;Q].

(c) If P,Q ∈ Pba, then L[f ;P ] ≤ U [f ;Q].

(d) Let

Uf := (b− a) max
x∈[a,b]

{f(x)} & Lf := (b− a) min
x∈[a,b]

{f(x)}. (26.10)

Then

Lf ≤ L[f ;P ] ≤ U [f ;P ] ≤ Uf ∀ P ∈ Pba. (26.11)

Proof. space

(a) This follows immediately from the definition.
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(b) Let P = (a = x0, x1, . . . , xn−1, xn = b) be a partition of [a, b] and let Q be a refinement of P

obtained by adding one extra point y, between, say xk−1 and xk for some k, i.e. Q = (a =

x0, x1, . . . , xk−1, y, xk, . . . , xn−1, xn = b). Then,

(xk − y) inf
x∈[y,xk]

{
f(x)

}
+ (y − xk−1) inf

x∈[xk−1,y]

{
f(x)

}
≥ (xk − y) inf

x∈[xk−1,xk]

{
f(x)

}
+ (y − xk−1) inf

x∈[xk−1,xk]

{
f(x)

}
= (xk − xk−1) inf

x∈[xk−1,xk]

{
f(x)

}
.

(26.12)

Hence,

L[f ;Q] =
n∑
i=1
i 6=k

(xi−1 − xi) inf
x∈[xi−1,xi]

{
f(x)

}
+ (xk − y) inf

x∈[y,xk]

{
f(x)

}
+ (y − xk−1) inf

x∈[xk−1,y]

{
f(x)

}
≥

n∑
i=1
i 6=k

(xi−1 − xi) inf
x∈[xi−1,xi]

{
f(x)

}
+ (xk − xk−1) inf

x∈[xk−1,xk]

{
f(x)

}

=
n∑
i=1

(xi−1 − xi) inf
x∈[xi−1,xi]

{
f(x)

}
= L[f ;P ].

(26.13)

Since every refinement of P is obtained by such “single step” refinements, this proves that

L[f ;P ] ≤ L[f ;Q] whenever P ≤ Q.

f

bx4x3x2x1a

→

f

bx8x7x6x5x4x3x2x1a

A similar proof shows that U [f ;P ] ≥ U [f ;Q].

(c) Let P ∨Q be the common refinement of P and Q. Then, by definition of the upper and lower

sums along with part (b) of this Lemma,

L[f ;P ] ≤ L[f ;P ∨Q] ≤ U [f ;P ∨Q] ≤ U [f ;Q]. (26.14)

(d) Let I be the partition I = {a, b} consisting of only the endpoints (the letter I is used for the

word “initial”). Notice that I ≤ P for any partition P ∈ Pba. Furthermore, Uf = U [f ; I] and

Lf = L[f ; I]. Thus, by part (b), the conclusion follows.
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With this Lemma, the following definition can be made.

Definition 26.15. Let a, b ∈ R with a < b and let f : [a, b] → R be a bounded function. The

upper and lower integrals of f on [a, b] are∫ b

a

f := inf
P∈Pab
{U [f ;P ]} &

∫ b

a

f := sup
P∈Pab
{L[f ;P ]}, (26.16)

respectively. A function f as above is said to be Riemann integrable iff∫ b

a

f =

∫ b

a

f (26.17)

and its Riemann integral over [a, b] is given by this common value and is denoted by
∫ b
a
f or∫ b

a
f(x)dx.

Note that the upper integral and lower integrals always exist for bounded functions on closed

intervals by the previous Lemma (Lf is a lower bound for all U [f ;P ] and Uf is an upper bound

for all L[f ;P ]).

Example 26.18. Consider the Dirichlet function f from Example 16.13 restricted to the domain

[−1, 1]. Then
∫ 1

−1
f = 1 and

∫ 1

−1
f = 0 since every interval of nonzero length contains (infinitely

many) rational and irrational numbers. Therefore, the Dirichlet function is not integrable.

We now list some necessary and/or sufficient conditions for functions to be Riemann integrable.

Theorem 26.19 (Integrability Criterion). Let f : [a, b] → R be a bounded function. Then the

following are equivalent.

(a) f is Riemann integrable.

(b) For every ε > 0, there exists a partition Pε of [a, b] such that

U [f ;Pε]− L[f ;Pε] < ε. (26.20)

(c) There exists a sequence of partitions (P1, P2, P3, . . . ) of [a, b] satisfying

lim
n→∞

(
U [f ;Pn]− L[f ;Pn]

)
= 0. (26.21)

Proof. See Abbott. �

Theorem 26.22. Let f : [a, b] → R be a continuous function. Then f is Riemann integrable on

[a, b].

Proof. See Abbott. �
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We will discuss more robust necessary and sufficient conditions for integrability in the next

lecture. For homework, you will prove the following fact.

Exercise 26.23. Show that if f : [a, b]→ R is monotone, then f is Riemann integrable on [a, b].

Lemma 26.24. Let a, b ∈ R with a < b and let f, g : [a, b] → R be two Riemann integrable

functions. Let P be a partition of [a, b]. Then

U [f + g;P ] ≤ U [f ;P ] + U [g;P ] (26.25)

and

L[f + g;P ] ≥ L[f ;P ] + L[g;P ]. (26.26)

Proof. Let the partition P be given by the ordered set P = (a = x0, x1, x2, . . . , xn−1, xn = b). For

any k ∈ {1, . . . , n} and for any y ∈ [xk−1, xk],

f(y) ≤ sup
x∈[xk−1,xk]

{
f(x)

}
& g(y) ≤ sup

x∈[xk−1,xk]

{
g(x)

}
. (26.27)

Hence,

f(y) + g(y) ≤ sup
x∈[xk−1,xk]

{
f(x)

}
+ sup

x∈[xk−1,xk]

{
g(x)

}
, (26.28)

which shows that supx∈[xk−1,xk]

{
f(x)

}
+supx∈[xk−1,xk]

{
g(x)

}
is an upper bound for the set

{
f(y)+

g(y) : y ∈ [xk−1, xk]
}
. But because the supremum of this set is the least upper bound, it follows

that

sup
x∈[xk−1,xk]

{
f(x) + g(x)} ≤ sup

x∈[xk−1,xk]

{
f(x)

}
+ sup

x∈[xk−1,xk]

{
g(x)

}
. (26.29)

Hence,

U [f + g;P ] =
n∑
k=1

(xk − xk−1) sup
x∈[xk−1,xk]

{
f(x) + g(x)}

≤
n∑
k=1

(xk − xk−1)
(

sup
x∈[xk−1,xk]

{
f(x)

}
+ sup

x∈[xk−1,xk]

{
g(x)

})
=

n∑
k=1

(xk − xk−1) sup
x∈[xk−1,xk]

{
f(x)

}
+

n∑
k=1

(xk − xk−1) sup
x∈[xk−1,xk]

{
g(x)

}
= U [f ;P ] + U [g;P ].

(26.30)

A similar calculation shows that L[f + g;P ] ≥ L[f ;P ] + L[g;P ]. �

Theorem 26.31. Let a, b, c ∈ R with a < b < c and let f : [a, c] → R. Then f is Riemann

integrable on [a, c] if and only if f is Riemann integrable on [a, b] and [b, c]. In this case,∫ c

a

f =

∫ b

a

f +

∫ c

b

f. (26.32)

Proof. See Abbott. �
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Theorem 26.33. Let a, b ∈ R with a < b, let f, g : [a, b] → R be Riemann integrable, and let

k ∈ R. Then the following facts, hold.

(a) f + g is Riemann integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g. (26.34)

(b) kf is Riemann integrable on [a, b] and∫ b

a

(kf) = k

∫ b

a

f. (26.35)

(c) Let m,M ∈ R satisfy m ≤ f(x) ≤M for all x ∈ [a, b]. Then

m(b− a) ≤
∫ b

a

f ≤M(b− a). (26.36)

(d) If f(x) ≤ g(x) for all x ∈ [a, b], then ∫ b

a

f ≤
∫ b

a

g. (26.37)

(e) fg is Riemann integrable on [a, b].

(f) |f | is Riemann integrable on [a, b] and ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |. (26.38)

Proof. space

(a) Fix ε > 0. By the Integrability Criterion, there exist partitions Pf and Pg of [a, b] such that

U [f ;Pf ]− L[f ;Pf ] <
ε

2
& U [g;Pg]− L[g;Pg] <

ε

2
. (26.39)

Set Pε := Pf ∨Pg to be the common refinement of Pf and Pg. Then, by Lemma 26.9 part (b),

U [f ;Pε]− L[f ;Pε] <
ε

2
& U [g;Pε]− L[g;Pε] <

ε

2
. (26.40)

Hence, by Lemma 26.24,

U [f + g;Pε]− L[f + g;Pε] ≤ U [f ;Pε] + U [g;Pε]− L[f ;Pε]− L[g;Pε]

<
ε

2
+
ε

2
by (26.40)

= ε.

(26.41)
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By the Integrability Criterion, this shows that f + g is Riemann integrable. The fact that∫ b
a
(f + g) =

∫ b
a
f +

∫ b
a
g follows from the following list of equalities and inequalities

sup
P∈Pba

{
L[f ;P ]}+ sup

P∈Pba

{
L[g;P ]}

∫ b

a

f +

∫ b

a

g
∫ b

a

f +

∫ b

a

g

inf
P∈Pba

{
U [f ;P ]}+ inf

P∈Pba

{
U [g;P ]}

inf
P∈Pba

{
U [f + g;P ]}

∫ b

a

(f + g)

∫ b

a

(f + g)

sup
P∈Pba

{
L[f + g;P ]}

≤≥

(26.42)

where the inequalities follow from Lemma 26.24 and the equalities between the upper and

lower integrals follow because f, g, and f + g are Riemann integrable.

(b) See Abbott.

(c) See Abbott.

(d) See Abbott.

(e)

(f) See Abbott.

�

Remark 26.43. For homework, you will also show that for any non-negative Riemann integrable

function f : [a, b] → R (f is non-negative iff f(x) ≥ 0 for all x ∈ [a, b]), the integral satisfies∫ b
a
f ≥ 0. Let Iba denote the set of integrable functions on [a, b]. Putting the previous theorem

and this fact together shows that
∫ b
a

can be viewed as a linear function
∫ b
a

: Iba → R that sends

non-negative elements (non-negative functions) to non-negative numbers. Similarly, given any

Riemann integrable function g : [a, b]→ R, the function

Iba 3 f 7→
∫ b

a

fg (26.44)

is also linear and non-negative whenever g is non-negative (it is well-defined by the previous

Theorem). One could then ask, are all linear and non-negative functions Iba → R of the above
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form? Namely, given an arbitrary linear and non-negative function ϕ : Iba → R, does there exist a

non-negative function g ∈ Iba such that

ϕ(f) =

∫ b

a

fg ∀ f ∈ Iba ? (26.45)

If you’ve taken linear algebra, this should seem like a familiar question. First note that the above

theorem says, in particular, that Iba is a real vector space (in fact, an algebra, since the product

of two Riemann integrable functions is Riemann integrable). In the context of linear algebra,

the question is phrased as follows. Let V be a vector space with an inner product 〈 · , · 〉 and

ϕ : V → R a linear function. Does there exist a vector v ∈ V such that ϕ(w) = 〈v, w〉 for all

w ∈ V ? I won’t answer the above question for Iba and leave you to contemplate it—one often finds

an answer in a course on measure theory or functional analysis.

After this lecture, it is recommended the student works through problem 3 on HW #7.
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27 December 6

Theorem 27.1. Let a, b ∈ R with a < b and let f : N→ R[a,b] be a sequence of Riemann integrable

functions that converge uniformly to lim f. Then lim f is Riemann integrable and

lim
n→∞

∫ b

a

fn =

∫ b

a

lim f. (27.2)

Proof. See Abbott. �

We will give a counter-example when the convergence in Theorem 27.1 is not uniform.

Example 27.3. Let A := Q ∩ [0, 1]. Since A is countable, there exists a bijection ϕ : N → A.

Define the sequence of functions f : N→ R[0,1] by

N× [0, 1] 3 (n, x) 7→ fn(x) :=

{
1 if x = ϕ(m) for some m ∈ {1, 2, . . . , n}
0 otherwise

(27.4)

Then, each fn is Riemann integrable and its integral is (exercise!)∫ 1

0

fn = 0. (27.5)

However, lim f is the Dirichlet function

(lim f)(x) =

{
1 if x ∈ A
0 otherwise

(27.6)

which we have shown is not integrable. Therefore,

lim
n→∞

∫ b

a

fn 6=
∫ b

a

lim f. (27.7)

In fact, the right-hand-side is not even defined. Abbott gives an example of a sequence of integrable

functions where the right-hand-side is defined but the two limits disagree.

Theorem 27.8 (Fundamental Theorem of Calculus). Let a, b ∈ R and let f : [a, b] → R be

Riemann integrable.

(a) Let F : [a, b]→ R be a function satisfying F ′ = f on [a, b]. Then∫ b

a

f = F (b)− F (a). (27.9)

(b) Define G : [a, b]→ R by

[a, b] 3 x 7→ G(x) :=

∫ x

a

f. (27.10)

Then G is continuous on [a, b]. Furthermore, if, in addition, f is continuous at c ∈ [a, b], then

G is differentiable at c and G′(c) = f(c).

Proof. See Abbott. �

Theorem 27.11 (Lebesgue’s Theorem). Let f : [a, b] → R be a bounded function. Then f is

Riemann integrable if and only if Df , the set of discontinuities of f, has measure zero.

Proof. See Abbott. �
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28 December 8

Today we will review for the final.
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