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Abstract

These are some extra notes to Gepner’s talk at MSRI. I do not necessarily write down everything

in his talk. I try to draw some analogies to things I’m aware of to better understand the material

(any errors I bring to the table are my own fault). I also include questions that I should answer

at some point.
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1 Classical viewpoint on Thom spectra

Recall that an action of a topological group G on a space X is a continuous functor

α : BG→ Spaces (1)

• 7→ X (2)

from G viewed as a one-object topological category to some category of spaces. The quotient

space X/G is the colimit of this functor. Since Spaces has a notion of homotopy, a homotopy

quotient can be more useful. We denote this by X//G or sometimes Gα (we will see why later).

In particular, G acts on the point ∗ via the trivial action. The quotient space ∗/G is just the point

while the homotopy quotient is BG. The homotopy quotient is used to define the equivariant

cohomology of a space S with a G action:

H∗G(X) := H∗(X//G). (3)

Gepner recalls that the Thom spectrum is something very similar to the homotopy quotient of an

action of a group on a point. Instead, we consider a (suitably continuous) functor

α : BG→ Spectra (4)

• 7→ S, (5)
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where S is the sphere spectrum.

Question 1. What is the map α? I’m assuming it has a definition and it’s not just some arbitrary

map.

The sphere spectrum is the monoidal unit in Spectra just as the point is the monoidal unit

in Spaces. The homotopy quotient S//G of the functor a is called the Thom spectrum and is

denoted by MG. Therefore, one should think of BG and MG as similar objects but in different

categories.

[From 3:30 to 7:00, Gepner gives several examples of Thom spectra]

2 Interlude on ∞-categories and topos theory

Since Spaces ≡ S is a model category, there is a natural ∞-category associated to it. We will

therefore always consider S as an ∞-category of spaces.

Question 2. What is the construction that takes a model category and spits out an ∞-category?

Given a space (aka an∞-groupoid) X, one can define the slice category S/X over X of continu-

ous maps (∞-functors) of spaces into X. Slice categories are examples of presentable ∞-categories.

The ∞-category of presentable ∞-categories is denoted by Pr. It is a subcategory of ∞-Cat, the

category of ∞-categories.

Question 3. What are the morphisms of this ∞-category? It seems like it will be a lot of data.

Do we want the obvious diagram to commute, or for there to exist a homotopy (and therefore

higher homotopies), or do we just want the diagram to commute up to homotopy?

Question 4. What are presentable ∞-categories?

Given a continuous map f : Y → X, there is a pullback functor f∗ : S/X → S/Y given by

taking the (homotopy) pullback. Therefore, the slice construction defines a functor

S/ : Sop → Pr (6)

X 7→ S/X . (7)

A given pullback associated to a map f : Y → X satisfies additional properties. Namely, there

exists an adjoint triple

S/X f∗ //
⊥

⊥
S/Y

f∗oo

f!oo

. (8)

The notation mean that f! is left adjoint to f∗ and f∗ is right adjoint to f∗. Presentable ∞-

categories whose spaces of morphisms that are both left (L) and right (R) adjoints form a sub-

category of Pr denoted by PrL,R. Therefore, the slice construction defines a functor S/ : Sop →
PrL,R →∞-Cat.

Recall that the category of spaces has a Grothendieck topology on it.

Question 5. What is the definition of sites on ∞-categories? Furthermore, which topology is the

one we’re using on spaces? Are coverings local homeomorphisms?

2



The functor S/ satisfies several properties.

1. S/ is a sheaf (in the∞ sense). People say that S/ satisfies descent. In particular, this implies

that if X = colimiXi, then S/X
'−→ limi S/Xi

, where again limits and colimits are in the

∞-categorical sense.

2. Given two spaces Y → X and Z → X in S/X , one can form the fiber product (this is just

the homotopy pullback in S). This product gives S/X the structure of a symmetric monoidal

∞-category. Therefore, S/ factors through commutative algebra objects in PrL,R,

S/ : Sop → CAlg(PrL,R). (9)

Question 6. Why do we say algebra? Don’t we just have a commutative monoid object?

What is the definition of a commutative algebra object?

Remark 1. We can think of the category CAlg(PrL,R) as a category of nice symmetric

monoidal model categories.

3. Because every space X is the colimit of its points

X ' colim
∗→X

∗, (10)

any sheaf (our example is S/) Sop → CAlg(PrL,R) is determined by its value on the point ∗.
We should therefore think of the sheaf over X as simply gluing several copies of this object

over all points in a coherent fashion.

There is actually an equivalence between sheaves Sop → CAlg(PrL,R) and commutative al-

gebra objects in PrL,R. The reason for this is because spaces are ∞-categories. More explicitly,

let C be such a commutative algebra object (note that in particular, it is an ∞-category). Then

define the presheaf

PreC( · ) : Sop → CAlg(PrL,R) (11)

X 7→ PreC(X) := Fun(Xop, C). (12)

It turns out this presheaf satisfies all the above properties. As a particular example, the ∞-

category of spaces S itself is a commutative algebra object in PrL,R. It’s a fact that the functors

PreS( · ) and S/ are naturally equivalent (this is one of the properties of an∞-topos). To see this,

for a space X, we have

S/X ' S/ colim∗→X ∗ ' lim
∗→X

S/∗ ' lim
∗→X

S ' Fun(Xop,S). (13)

Think about that last equivalence more carefully. We have a category of spaces over every point

in X (since S/∗ ' S) and these spaces must all glue together nicely. This is precisely the right-

hand-side.

This motivates the usage of the notation C/ : Sop → CAlg(PrL,R) defined by X 7→ C/X :=

PreC(X) for any C in CAlg(PrL,R). This functor C/ satisfies many properties.

If C is stable and if f : Y → X is a proper map (which means that the homotopy fibers are

compact), then f∗ admits another right adjoint f !

S/X
f∗ //
⊥

⊥

⊥

S/Y

f !oo

f∗oo

f!oo

. (14)
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Question 7. What does it mean for an ∞-category to be stable?

What are some examples of commutative algebra objects C in PrL,R? We will list some

examples that will be useful for generalizing the notion of Thom spectra later.

Example 1. The ∞-category of spaces S was already mentioned above.

Example 2. The ∞-category of spectra Sp (the monoidal structure is the smash product).

Example 3. Let A be an A∞, E∞, or En ring spectrum (think associative or commutative ring).

The ∞-category A-Mod of A-modules (spectra M equipped with a map A ∧M → M satisfying

the usual rules of modules in the ∞ sense) is an object of CAlg(PrL,R).

As a special case of the previous example, because the sphere spectrum is a unit in the category

of spectra, S-Mod is just Sp itself relating the third example to the second. So, the functor

Sp : Sop → CAlg(PrL,R) sends a space X to PreSp(X), presheaves of spectra on X. This category

PreSp(X) is actually monoidal. The monoidal product is pointwise smash product. The unit is

SX : x 7→ S (15)

and sending all higher simplices to identities. This should be thought of as the trivial sphere

spectrum over X. Equivalently, it is given by the pullback p∗S from the canonical map p : X → ∗.

3 The Picard functor and invertible objects

Let CAlggp(S) denote the ∞-category of group-like E∞-spaces (∞-groupoids). There is a very

special functor1

Pic : CAlg(PrL)→ CAlggp(S), (16)

called the Picard functor, that takes a nice symmetric monoidal ∞-category C to Pic(C) := C×,
the space of invertible objects in C. In particular, C× being a space implies that all morphisms are

invertible (since paths and homotopies are invertible).

Example 4. Let C = Sp be the category of spectra. Then

Pic(Sp) ' Pic(S) ' Z×BGL1(S). (17)

Question 8. I do not understand this computation at all. What is going on? In particular, what

is Picard applied to a particular spectrum? I thought it was a functor of ∞-categories.

Example 5. Let C = A-Mod for A an A∞, E∞, or En ring spectrum. Then Pic(A-Mod) is A-Line.

Here A-Line refers to A-modules L that admit an equivalence L
'−→ A. This is because A-Line is

the maximal ∞-groupoid in A-Mod generated by the A-lines (see Definition 3.11 [1]).

Example 6. Although I don’t know how to compute this, I’m assuming the following is an

example. Let X be a space. Then S/X as discussed earlier is an object of CAlg(PrL,R) and

therefore CAlg(PrL). Thus, one should be able to make sense of Pic(S/X).

1The L just means that morphisms are left adjoints.
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Question 9. Does Pic preserve limits? Because then we can compute this by evaluating Pic on

S itself. And if that is possible, then what is the subcategory of spaces of invertible objects? My

guess is contractible spaces.

Remark 2. The purpose of the Picard functor in [1] is to look at the special case C = A-Mod.

Then one gets A-Line which is where coefficient modules live. A-Line is a classifying space for

A-line bundles in some sense. We want to consider A-lines over a space X to specify the coefficients

of a local cohomology theory. In other words, these varying A-lines will allows us to “twist” our

cohomology theory, but I would prefer not to use the word “twist” since it’s a bit over-used and

simply say cohomology with coefficients in a line bundle. The totality of these A-lines will itself

be an A-module, called the Thom spectrum. One can also think of it as the total space of some

A-bundle in the generalized sense.

4 Modern viewpoint on Thom spectra

The Picard functor Pic : CAlg(PrL) → CAlggp(S) satisfies an important property that is used

in the generalization of Thom spectra.

Theorem 1 (ABG). Pic has a left adjoint and that adjoint is PreCAlg(PrL), presheaves, equipped

with the Day convolution symmetric monoidal structure. This means there exist counit and

unit natural transformations ε : PreCAlg(PrL) ◦ Pic ⇒ idCAlg(PrL) and η : idCAlggp(S) ⇒ Pic ◦
PreCAlg(PrL), respectively, satisfying the zig-zag identities.

Since Pic(C) is a space, the counit defines a functor

εC : PreCAlg(PrL)(Pic(C)) ≡ Fun
(
Pic(C)op,CAlg(PrL)

)
' S/Pic(C) → C. (18)

Question 10. I do not see why the left-hand-side (the definition of the presheaf functor) is

equivalent to S/Pic(C) yet Gepner writes the counit as having domain S/Pic(C).

Definition 1. The counit S/Pic(C) → C in the previous theorem is called the generalized Thom

spectrum functor. It sends a functor α : X → Pic(C) to an object Xα of C called the Thom

spectrum of α : X → Pic(C).

The reason for this terminology will be shown in Theorem 2. One thinks of Xα as the total

space associated to α : X → Pic(C).

Proposition 1. The counit from above is colimit preserving and symmetric monoidal.

Now we can relate this discussion to the earlier one on Thom spectra.

Theorem 2. Let α : BG → Sp be a functor that sends • to S as at the beginning of this talk

[I still don’t know exactly what it is]. Now, this means we have a map at the level of spaces

α : BG→ BGL1(S) which is basically an object of S/Pic(Sp) since Pic(Sp) ' Z× BGL1(S) [we’re

ignoring the Z factor perhaps by assuming out spaces are connected for simplicity]. Under the

counit from above, α (viewed as an object of S/Pic(Sp)) gets sent to the Thom spectrum MG in the

category Sp.

We will now focus on C = A-Mod with A a suitable ring spectrum as earlier discussed. Re-

member that in this case, Pic(A-Mod) is A-Line.
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Definition 2. Let α : X → Pic(A-Mod) = A-Line be an object of S/A-Line ' Fun(Xop, A-Line).

Denote the associated Thom spectrum, the image of α under the counit map S/A-Line → A-Mod,

by Xα. The A-twisted homology/cohomology of X with twist α is defined as follows. The homology

is

Aαn(X) := π0A-Mod(ΣnA,Xα) = πnX
α (19)

and the cohomology is

Anα(X) := π0A-Mod(Xα,ΣnA). (20)

Remark 3. Now, why should this be called twisted homology and cohomology? In ordinary

cohomology theory, we have a global coefficient ring A. This would correspond to a constant

functor that sends every point x ∈ X to the constant A-line A. For local coefficients, one simply

has some A-line associated to every point of X. This is where the twist comes from and it is

precisely represented by a map α : X → Pic(A-Mod) = A-Line.

[From 47:30 until the end of the lecture, Gepner gives examples]
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