Categorical probability in the quantum realm

Arthur J. Parzygnat

IHÉS, France Categorical Probability and Statistics 2020 June 5–8

2020 June 7

- Introducing fdC*-AlgU[§]
- Quantum and classical Markov categories
- Subcategories of fdC*-AlgU[◊]
- 4 Schwarz-positive subcategories
- 5 Disintegrations and Bayesian inversion

About 90% of this talk is on https://arxiv.org/abs/2001.08375 and the other 10% of this talk is based on joint work with Benjamin Russo at SUNY Farmingdale in New York and is available at

https://arxiv.org/abs/1907.09689 and

https://arxiv.org/abs/2005.03886.

fdC*-AlgU as a category

The objects of **fdC*-AlgU** $^{\Diamond}$ are finite-dimensional unital C^* -algebras, which are all of the form (up to isomorphism)

$$\mathcal{A} = \bigoplus_{x \in X} \mathcal{M}_{m_x},$$

where X is a finite set and \mathcal{M}_{m_X} is the unital *-algebra of all $m_X \times m_X$ matrices equipped with the operator norm and conjugate transpose as the involution *.

fdC*-AlgU⁽⁾ as a category

The objects of **fdC*-AlgU** $^{\Diamond}$ are finite-dimensional unital C^* -algebras, which are all of the form (up to isomorphism)

$$\mathcal{A} = \bigoplus_{x \in X} \mathcal{M}_{m_x},$$

where X is a finite set and \mathcal{M}_{m_X} is the unital *-algebra of all $m_X \times m_X$ matrices equipped with the operator norm and conjugate transpose as the involution *.

A morphism from \mathcal{B} to \mathcal{A} is either a linear unital map or a *conjugate* linear unital map $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$. The latter means $F(\lambda b) = \overline{\lambda} F(b)$ for all $\lambda \in \mathbb{C}$ and $b \in \mathcal{B}$, where $\overline{\lambda}$ is the conjugate transpose of λ .

Tensor products in **fdC*-AlgU**[◊]?

You can take the tensor product of linear maps to get a linear map,

Tensor products in **fdC*-AlgU**^ℚ?

You can take the tensor product of linear maps to get a linear map, you can take the tensor product of conjugate linear maps to get a conjugate linear map,

Tensor products in **fdC*-AlgU**^{\(\infty\)}?

You can take the tensor product of linear maps to get a linear map, you can take the tensor product of conjugate linear maps to get a conjugate linear map,

but you can't take the tensor product of a linear map and a conjugate linear to get one or the other. Indeed if F is conjugate linear and G is linear then

Tensor products in **fdC*-AlgU**[◊]?

You can take the tensor product of linear maps to get a linear map, you can take the tensor product of conjugate linear maps to get a conjugate linear map,

but you can't take the tensor product of a linear map and a conjugate linear to get one or the other. Indeed if F is conjugate linear and G is linear then

$$(F \otimes G)(\lambda x \otimes y)$$

$$F(\lambda x) \otimes G(y)$$

$$\sqrt{\lambda}F(x) \otimes G(y)$$

Tensor products in **fdC*-AlgU**[◊]?

You can take the tensor product of linear maps to get a linear map, you can take the tensor product of conjugate linear maps to get a conjugate linear map,

but you can't take the tensor product of a linear map and a conjugate linear to get one or the other. Indeed if F is conjugate linear and G is linear then

fdC*-AlgU $^{\emptyset}$ as a \mathbb{Z}_2 -graded ⊗-category

Thus, **fdC*-AlgU**[∅] is not a monoidal category with the usual tensor product. Instead, we can only take the tensor product of "even" morphisms (linear maps) and "odd" morphisms (conjugate linear maps).

Thus, $\mathbf{fdC^*}$ - \mathbf{AlgU}^{\Diamond} is not a monoidal category with the usual tensor product. Instead, we can only take the tensor product of "even" morphisms (linear maps) and "odd" morphisms (conjugate linear maps). There is also a unit I equipped with an even and odd morphism that act as an identity for the \mathbb{Z}_2 -monoidal structure.

fdC*-AlgU $^{\emptyset}$ as a \mathbb{Z}_2 -graded ⊗-category

Thus, $\mathbf{fdC^*-AlgU^{\lozenge}}$ is not a monoidal category with the usual tensor product. Instead, we can only take the tensor product of "even" morphisms (linear maps) and "odd" morphisms (conjugate linear maps). There is also a unit I equipped with an even and odd morphism that act as an identity for the \mathbb{Z}_2 -monoidal structure.

This can be made precise with the notion of *G*-graded monoidal categories of Fröhlich and Wall.

Quantum Markov categories

Definition

A **quantum Markov category** (QMC) is a \mathbb{Z}_2 -monoidal category \mathcal{M} together with a family of morphisms **copy** $\mu_{\mathcal{A}}: \mathcal{A} \otimes \mathcal{A} \leadsto \mathcal{A}$, **discard** $!_{\mathcal{A}}: I \leadsto \mathcal{A}$, and **involve** $*_{\mathcal{A}}: \mathcal{A} \leadsto \mathcal{A}$, all depicted in string diagram notation as

for all objects $\mathcal A$ in $\mathcal M$. These morphisms are required to satisfy several conditions.

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
*
*
*
*
<

QMC String diagrams

$$1_{A}a = a = a1_{A}$$

$$\stackrel{=}{=}_{A} = \frac{1}{A} = \frac{1}{A}$$

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}} \qquad (a_{1}a_{2})a_{3} = a_{1}(a_{2}a_{3}) \qquad a_{2}^{*}a_{1}^{*} = (a_{1}a_{2})^{*}$$

$$\stackrel{=}{\vdash}_{\mathcal{A}} \otimes \mathcal{B} = \stackrel{=}{\vdash}_{\mathcal{A}} \stackrel{=}{\vdash}_{\mathcal{B}} \qquad \stackrel{=}{\vdash}_{\mathcal{A}} = \stackrel{=}{\vdash}_{\mathcal{A}} \otimes \mathcal{B} = \stackrel{=}{\vdash}_{\mathcal{A}}$$

$$1_{\mathcal{A}} a = a = a1_{\mathcal{A}} \qquad (a_{1}a_{2})a_{3} = a_{1}(a_{2}a_{3}) \qquad a_{2}^{*}a_{1}^{*} = (a_{1}a_{2})^{*}$$

$$1_{\mathcal{A} \otimes \mathcal{B}} = 1_{\mathcal{A}} \otimes 1_{\mathcal{B}} \qquad \overline{\qquad} \qquad \overline{\qquad}$$

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2a_1 = (a_1a_2)^*$
 $1_{\mathcal{A}\otimes\mathcal{B}} = 1_{\mathcal{A}}\otimes 1_{\mathcal{B}}$ $!_{\mathbb{C}}(\lambda) = \lambda$ $(a\otimes b)(a'\otimes b') = (aa')\otimes (bb')$
 $(a^*)^* = a$ $A\otimes\mathcal{B} = A\otimes\mathcal{B}$ $A\otimes\mathcal{B} = A\otimes\mathcal{B}$

 $a_2^* a_1^* = (a_1 a_2)^*$

 $1_A a = a = a1_A$

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2^*a_1^* = (a_1a_2)^*$

$$1_{\mathcal{A}\otimes\mathcal{B}} = 1_{\mathcal{A}}\otimes 1_{\mathcal{B}}$$
 $!_{\mathbb{C}}(\lambda) = \lambda \quad (a\otimes b)(a'\otimes b') = (aa')\otimes (bb')$

$$(a^*)^* = a \qquad (a \otimes b)^* = a^* \otimes b^*$$

$$rac{1}{1} = \frac{1}{1}$$
 $rac{1}{1}$ $rac{1}$ $rac{1}$

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 釣へで

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2^*a_1^* = (a_1a_2)^*$

$$1_{\mathcal{A}\otimes\mathcal{B}} = 1_{\mathcal{A}}\otimes 1_{\mathcal{B}} \qquad !_{\mathbb{C}}(\lambda) = \lambda \quad (a\otimes b)(a'\otimes b') = (aa')\otimes (bb')$$

$$(a^*)^* = a$$
 $(a \otimes b)^* = a^* \otimes b^*$ $(\lambda 1_A)^* = \overline{\lambda} 1_A$

$$\begin{array}{c} \overline{} \\ \overline{}$$

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2^*a_1^* = (a_1a_2)^*$ $1_{\mathcal{A}\otimes\mathcal{B}} = 1_{\mathcal{A}}\otimes 1_{\mathcal{B}}$ $!_{\mathbb{C}}(\lambda) = \lambda$ $(a\otimes b)(a'\otimes b') = (aa')\otimes(bb')$ $(a^*)^* = a$ $(a\otimes b)^* = a^*\otimes b^*$ $(\lambda 1_{\mathcal{A}})^* = \overline{\lambda}1_{\mathcal{A}}$ $\mu_{\mathbb{C}}(\lambda\otimes\lambda') = \lambda\lambda'$ even $= \overline{-}$ odd $= \overline{-}$

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2^*a_1^* = (a_1a_2)^*$ $1_{\mathcal{A}\otimes\mathcal{B}} = 1_{\mathcal{A}}\otimes 1_{\mathcal{B}}$ $!_{\mathbb{C}}(\lambda) = \lambda$ $(a\otimes b)(a'\otimes b') = (aa')\otimes(bb')$ $(a^*)^* = a$ $(a\otimes b)^* = a^*\otimes b^*$ $(\lambda 1_{\mathcal{A}})^* = \overline{\lambda}1_{\mathcal{A}}$ $\mu_{\mathbb{C}}(\lambda\otimes\lambda') = \lambda\lambda'$ $f_{\text{even}}(\lambda 1_{\mathcal{B}}) = \lambda 1_{\mathcal{A}}$ $\overline{\text{odd}} = \overline{\frac{-}{\downarrow}}$

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2^*a_1^* = (a_1a_2)^*$ $1_{\mathcal{A}\otimes\mathcal{B}} = 1_{\mathcal{A}}\otimes 1_{\mathcal{B}}$ $!_{\mathbb{C}}(\lambda) = \lambda$ $(a\otimes b)(a'\otimes b') = (aa')\otimes(bb')$ $(a^*)^* = a$ $(a\otimes b)^* = a^*\otimes b^*$ $(\lambda 1_{\mathcal{A}})^* = \overline{\lambda}1_{\mathcal{A}}$ $\mu_{\mathbb{C}}(\lambda\otimes\lambda') = \lambda\lambda'$ $f_{\mathrm{even}}(\lambda 1_{\mathcal{B}}) = \lambda 1_{\mathcal{A}}$ $f_{\mathrm{odd}}(\lambda 1_{\mathcal{B}}) = \overline{\lambda}1_{\mathcal{A}}$

4 D > 4 D > 4 E > 4 E > E 9 Q P

QMC String diagrams

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in \mathcal{C} , then $\mathcal{C}_{\mathrm{even}}$ is said to be a **classical Markov** subcategory of \mathcal{M} .

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in \mathcal{C} , then \mathcal{C}_{even} is said to be a **classical Markov** subcategory of \mathcal{M} . Thus,

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in $\mathcal C$, then $\mathcal C_{\mathrm{even}}$ is said to be a **classical Markov** subcategory of $\mathcal M$. Thus,

$$\qquad \qquad \underbrace{*^2 = \mathrm{id}}_{} \qquad \qquad \bigvee$$

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in \mathcal{C} , then \mathcal{C}_{even} is said to be a **classical Markov** subcategory of \mathcal{M} . Thus,

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in \mathcal{C} , then \mathcal{C}_{even} is said to be a **classical Markov** subcategory of \mathcal{M} . Thus,

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in \mathcal{C} , then $\mathcal{C}_{\mathrm{even}}$ is said to be a **classical Markov** subcategory of \mathcal{M} . Thus,

which reproduces the usual definition of a Markov category.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

If there is a subcategory $\mathcal C$ of $\mathcal M$ that is also a quantum Markov category but satisfies, in addition,

for all objects in \mathcal{C} , then \mathcal{C}_{even} is said to be a **classical Markov** subcategory of \mathcal{M} . Thus,

which reproduces the usual definition of a Markov category. In the case of $\mathbf{fdC^*}$ -AlgU $^{\Diamond}$, the subcategory of *commutative* finite-dimensional C^* -algebras and positive unital maps (defined shortly) is equivalent to **FinStoch**^{op}, the category of finite sets and stochastic maps.

Positive maps

fdC*-AlgU has several important subcategories.

fdC*-AlgU has several important subcategories.

Definition

An element of a C^* -algebra \mathcal{A} is **positive** iff it equals a^*a for some $a \in \mathcal{A}$.

fdC*-AlgU has several important subcategories.

Definition

An element of a C^* -algebra \mathcal{A} is **positive** iff it equals a^*a for some $a \in \mathcal{A}$. A linear map $F : \mathcal{B} \leadsto \mathcal{A}$ is **positive** iff it sends positive elements to positive elements.

fdC*-AlgU has several important subcategories.

Definition

An element of a C^* -algebra \mathcal{A} is **positive** iff it equals a^*a for some $a \in \mathcal{A}$. A linear map $F : \mathcal{B} \leadsto \mathcal{A}$ is **positive** iff it sends positive elements to positive elements.

Example

For matrix algebras, a matrix is positive if and only if it is self-adjoint and its eigenvalues are non-negative.

fdC*-AlgU[∅] has several important subcategories.

Definition

An element of a C^* -algebra \mathcal{A} is **positive** iff it equals a^*a for some $a \in \mathcal{A}$. A linear map $F : \mathcal{B} \leadsto \mathcal{A}$ is **positive** iff it sends positive elements to positive elements.

Example

For matrix algebras, a matrix is positive if and only if it is self-adjoint and its eigenvalues are non-negative. The transpose map $\mathcal{M}_m \ni A \mapsto A^T \in \mathcal{M}_m$ is positive unital.

fdC*-AlgU has several important subcategories.

Definition

An element of a C^* -algebra \mathcal{A} is **positive** iff it equals a^*a for some $a \in \mathcal{A}$. A linear map $F : \mathcal{B} \leadsto \mathcal{A}$ is **positive** iff it sends positive elements to positive elements.

Example

For matrix algebras, a matrix is positive if and only if it is self-adjoint and its eigenvalues are non-negative. The transpose map $\mathcal{M}_m \ni A \mapsto A^T \in \mathcal{M}_m$ is positive unital.

Let fdC^* -AlgPU denote the subcategory of fdC^* -AlgU $^{\Diamond}$ consisting of the same objects as fdC^* -AlgU $^{\Diamond}$ but the morphisms are only all the positive unital (PU) maps.

(ㅁㅏ 4륜ㅏ 4분ㅏ - 분 - 쒸qC

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive,

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive, but the converse is not true!

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive, but the converse is not true!

Example

The map $F: \mathcal{M}_2 \leadsto \mathcal{M}_2$ given by taking the transpose, namely $F(b) := b^T$, is positive unital but not Schwarz positive.

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive, but the converse is not true!

Example

The map $F: \mathcal{M}_2 \leadsto \mathcal{M}_2$ given by taking the transpose, namely $F(b) := b^T$, is positive unital but not Schwarz positive. Indeed, $F(b^*b) = (\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$,

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive, but the converse is not true!

Example

The map $F: \mathcal{M}_2 \leadsto \mathcal{M}_2$ given by taking the transpose, namely $F(b) := b^T$, is positive unital but not Schwarz positive. Indeed, $F(b^*b) = \left(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right] \left[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right] \right)^T = \left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right]$, while $F(b)^*F(b) = \left[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right] \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right] = \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix} \right]$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive, but the converse is not true!

Example

The map $F: \mathcal{M}_2 \leadsto \mathcal{M}_2$ given by taking the transpose, namely $F(b) := b^T$, is positive unital but not Schwarz positive. Indeed, $F(b^*b) = \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right)^T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, while $F(b)^*F(b) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

Let **fdC*-AlgSPU** denote the subcategory of **fdC*-AlgPU** consisting of the same objects as **fdC*-AlgPU** but the morphisms are only all the Schwarz positive unital (SPU) maps.

40 - 40 - 43 - 43 - 5 - 998

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is n-positive iff

 $\mathrm{id}_{\mathcal{M}_n}\otimes F:\mathcal{M}_n\otimes\mathcal{B} \leadsto \mathcal{M}_n\otimes\mathcal{A} \text{ is positive}.$

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is *n*-**positive** iff

 $\mathrm{id}_{\mathcal{M}_n} \otimes F : \mathcal{M}_n \otimes \mathcal{B} \leadsto \mathcal{M}_n \otimes \mathcal{A}$ is positive. F is **completely positive** iff F is n-positive for all $n \in \mathbb{N}$.

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is *n*-positive iff $\mathrm{id}_{\mathcal{M}_n} \otimes F: \mathcal{M}_n \otimes \mathcal{B} \leadsto \mathcal{M}_n \otimes \mathcal{A}$ is positive. F is **completely positive** iff F is *n*-positive for all $n \in \mathbb{N}$.

Every *n*-positive map is (n-1) positive,

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is *n*-positive iff $\mathrm{id}_{\mathcal{M}_n} \otimes F: \mathcal{M}_n \otimes \mathcal{B} \leadsto \mathcal{M}_n \otimes \mathcal{A}$ is positive. F is **completely positive** iff F is *n*-positive for all $n \in \mathbb{N}$.

Every *n*-positive map is (n-1) positive, and every 2-positive map is Schwarz positive,

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is *n*-positive iff $\mathrm{id}_{\mathcal{M}_n} \otimes F: \mathcal{M}_n \otimes \mathcal{B} \leadsto \mathcal{M}_n \otimes \mathcal{A}$ is positive. F is **completely positive** iff F is *n*-positive for all $n \in \mathbb{N}$.

Every n-positive map is (n-1) positive, and every 2-positive map is Schwarz positive, but not every Schwarz positive map is 2-positive!

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is n-positive iff

 $id_{\mathcal{M}_n} \otimes F : \mathcal{M}_n \otimes \mathcal{B} \leadsto \mathcal{M}_n \otimes \mathcal{A}$ is positive. F is **completely positive** iff F is n-positive for all $n \in \mathbb{N}$.

Every n-positive map is (n-1) positive, and every 2-positive map is Schwarz positive, but not every Schwarz positive map is 2-positive!

Example (Choi 1980)

The map $F: \mathcal{M}_2 \leadsto \mathcal{M}_2$ given by $F(b) := \frac{1}{2}b^T + \frac{1}{4}\mathrm{tr}(b)\mathbb{1}_2$ is Schwarz positive unital but not 2-positive.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Definition

A linear map $F: \mathcal{B} \leadsto \mathcal{A}$ is n-positive iff $\mathrm{id}_{\mathcal{M}_n} \otimes F: \mathcal{M}_n \otimes \mathcal{B} \leadsto \mathcal{M}_n \otimes \mathcal{A}$ is positive. F is **completely positive** iff F is n-positive for all $n \in \mathbb{N}$.

Every n-positive map is (n-1) positive, and every 2-positive map is Schwarz positive, but not every Schwarz positive map is 2-positive!

Example (Choi 1980)

The map $F: \mathcal{M}_2 \leadsto \mathcal{M}_2$ given by $F(b) := \frac{1}{2}b^T + \frac{1}{4}\mathrm{tr}(b)\mathbb{1}_2$ is Schwarz positive unital but not 2-positive.

Let **fdC*-AlgCPU** denote the subcategory of **fdC*-AlgSPU** consisting of the same objects as **fdC*-AlgSPU** but the morphisms are only all the completely positive unital maps.

◆ロト ◆個ト ◆量ト ◆量ト ■ りへの

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$.

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

All *-homomorphisms are completely positive,

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

All *-homomorphisms are completely positive, but there are completely positive maps that are not *-homomorphisms.

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

All *-homomorphisms are completely positive, but there are completely positive maps that are not *-homomorphisms. Let fdC*-AlgDU be the subcategory of fdC*-AlgCPU consisting of deterministic unital maps only.

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

All *-homomorphisms are completely positive, but there are completely positive maps that are not *-homomorphisms. Let fdC*-AlgDU be the subcategory of fdC*-AlgCPU consisting of deterministic unital maps only. Thus, we have a hierarchy of notions of positivity.

Definition

A linear map $F: \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

All *-homomorphisms are completely positive, but there are completely positive maps that are not *-homomorphisms. Let fdC*-AlgDU be the subcategory of fdC*-AlgCPU consisting of deterministic unital maps only. Thus, we have a hierarchy of notions of positivity.

 fdC^* -AlgDU $\subseteq fdC^*$ -AlgCPU $\subseteq fdC^*$ -AlgSPU $\subseteq fdC^*$ -AlgPU.

4 D > 4 D > 4 E > 4 E > E 9990

In his first draft of "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics," Fritz defined a positive Markov category:

In his first draft of "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics," Fritz defined a positive Markov category:

11.19. Definition. We say that C is positive if the following condition holds: whenever

holds for any morphisms as indicated, then also

I begun my work on the relationship between disintegrations and Bayesian inversion roughly in May 2019.

I begun my work on the relationship between disintegrations and Bayesian inversion roughly in May 2019. When Fritz' paper came out in August, I immediately tried checking if fdC*-AlgCPU was positive (as a subcategory of fdC*-AlgU⁽⁾).

I begun my work on the relationship between disintegrations and Bayesian inversion roughly in May 2019. When Fritz' paper came out in August, I immediately tried checking if fdC*-AlgCPU was positive (as a subcategory of **fdC*-AlgU**⁽⁾). But I couldn't prove it!

I begun my work on the relationship between disintegrations and Bayesian inversion roughly in May 2019. When Fritz' paper came out in August, I immediately tried checking if fdC*-AlgCPU was positive (as a subcategory of **fdC*-AlgU**[∅]). But I couldn't prove it! Two months later, Fritz had updated his definition (which I just adapted to the QMC context):

I begun my work on the relationship between disintegrations and Bayesian inversion roughly in May 2019. When Fritz' paper came out in August, I immediately tried checking if $\mathbf{fdC^*}$ -AlgCPU was positive (as a subcategory of $\mathbf{fdC^*}$ -AlgU $^{\Diamond}$). But I couldn't prove it! Two months later, Fritz had updated his definition (which I just adapted to the QMC context):

Definition

Let $\mathcal M$ be a quantum Markov category. A subcategory $\mathcal P\subseteq\mathcal M_{\mathrm{even}}$ is said to be **S-positive** in $\mathcal M$ iff for every pair of composable morphisms $\mathcal C\stackrel{\mathcal G}{\leadsto}\mathcal B\stackrel{\mathcal F}{\leadsto}\mathcal A$ in $\mathcal P$ such that $F\circ G$ is deterministic, then

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU^{\(\)}.

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU^{\(\)}.

But...

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

```
Theorem (P. 2001.08375 [quant-ph])
```

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU\(\frac{1}{2}\).

But... **fdC*-AlgPU** is *not* an S-positive subcategory of **fdC*-AlgU**^{\(\infty\)}!

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU^{\(\)}.

But... fdC*-AlgPU is *not* an S-positive subcategory of fdC*-AlgU^{\(\infty\)}! Indeed, the transpose map $F: \mathcal{M}_m \leadsto \mathcal{M}_m$ composed with itself is the identity, and is therefore deterministic, but

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU^ℚ

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU[♥].

But... $\mathbf{fdC^*}$ - \mathbf{AlgPU} is *not* a positive subcategory of $\mathbf{fdC^*}$ - $\mathbf{AlgU}^{\emptyset}$! Indeed, the transpose map $F: \mathcal{M}_m \leadsto \mathcal{M}_m$ composed with itself is the identity, and is therefore deterministic, but

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU[∅]

I think the proof is neat so let's try it out. It rests on something called the "Multiplication Theorem" for Schwarz positive maps.

I think the proof is neat so let's try it out. It rests on something called the "Multiplication Theorem" for Schwarz positive maps.

Lemma (The Multiplication Theorem)

Let $\mathcal{B} \stackrel{\varphi}{\leadsto} \mathcal{A}$ be an SPU map between C^* -algebras. Suppose that $\varphi(b^*b) = \varphi(b)^*\varphi(b)$ for some $b \in \mathcal{B}$. Then

$$\varphi(b^*c) = \varphi(b)^*\varphi(c)$$
 and $\varphi(c^*b) = \varphi(c)^*\varphi(b)$ $\forall c \in \mathcal{B}$.

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU[∅]

I think the proof is neat so let's try it out. It rests on something called the "Multiplication Theorem" for Schwarz positive maps.

Lemma (The Multiplication Theorem)

Let $\mathcal{B} \stackrel{\varphi}{\leadsto} \mathcal{A}$ be an SPU map between C^* -algebras. Suppose that $\varphi(b^*b) = \varphi(b)^*\varphi(b)$ for some $b \in \mathcal{B}$. Then

$$\varphi(b^*c) = \varphi(b)^*\varphi(c)$$
 and $\varphi(c^*b) = \varphi(c)^*\varphi(b)$ $\forall c \in \mathcal{B}$.

Now, our goal is to prove

$$F(G(c)b) = F(G(c))F(b)$$

◆ロト ◆部 ▶ ◆差 ▶ ◆差 ▶ 第 め Q ○

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism.

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$F(G(c)^*G(c)) \le F(G(c^*c))$$
 by S-positivity of G

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$F(G(c)^*G(c)) \le F(G(c^*c))$$
 by S-positivity of G
= $F(G(c))^*F(G(c))$ since $F \circ G$ is deterministic

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$Fig(G(c)^*G(c)ig) \le Fig(G(c^*c)ig)$$
 by S-positivity of G

$$= Fig(G(c)ig)^*Fig(G(c)ig) \quad \text{since } F\circ G \text{ is deterministic}$$

$$\le Fig(G(c)^*G(c)ig) \quad \text{by S-positivity of } F$$

holds for all $c \in \mathcal{C}$.

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$F(G(c)^*G(c)) \leq F(G(c^*c))$$
 by S-positivity of G
= $F(G(c))^*F(G(c))$ since $F \circ G$ is deterministic
 $\leq F(G(c)^*G(c))$ by S-positivity of F

holds for all $c \in \mathcal{C}$. Thus, all inequalities become equalities.

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$F(G(c)^*G(c)) \leq F(G(c^*c))$$
 by S-positivity of G
= $F(G(c))^*F(G(c))$ since $F \circ G$ is deterministic
 $\leq F(G(c)^*G(c))$ by S-positivity of F

holds for all $c \in \mathcal{C}$. Thus, all inequalities become equalities. In particular,

$$F(G(c)^*G(c)) = F(G(c))^*F(G(c)) \quad \forall c \in C.$$

Let $C \xrightarrow{G} B \xrightarrow{F} A$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$Fig(G(c)^*G(c)ig) \le Fig(G(c^*c)ig)$$
 by S-positivity of G

$$= Fig(G(c)ig)^*Fig(G(c)ig)$$
 since $F\circ G$ is deterministic
$$\le Fig(G(c)^*G(c)ig)$$
 by S-positivity of F

holds for all $c \in \mathcal{C}$. Thus, all inequalities become equalities. In particular,

$$F(G(c)^*G(c)) = F(G(c))^*F(G(c)) \quad \forall c \in C.$$

By the Multiplicative Theorem, this implies

$$F(G(c)^*b) = F(G(c))^*F(b) \quad \forall c \in C, b \in B.$$

◆ロ > ◆個 > ◆注 > ◆注 > ・注 ・ りへ ○

Let $\mathcal{C} \stackrel{G}{\leadsto} \mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$Fig(G(c)^*G(c)ig) \le Fig(G(c^*c)ig)$$
 by S-positivity of G

$$= Fig(G(c)ig)^*Fig(G(c)ig)$$
 since $F\circ G$ is deterministic
$$\le Fig(G(c)^*G(c)ig)$$
 by S-positivity of F

holds for all $c \in \mathcal{C}$. Thus, all inequalities become equalities. In particular,

$$F(G(c)^*G(c)) = F(G(c))^*F(G(c)) \quad \forall c \in C.$$

By the Multiplicative Theorem, this implies

$$F(G(c)^*b) = F(G(c))^*F(b) \quad \forall c \in C, b \in B.$$

Since F and G are *-preserving (natural with respect to *) and * is an involution, this reproduces the required condition.

Arthur J. Parzygnat (IHÉS, France)

fdC*-AlgCPU is also an S-positive subcategory of fdC*-AlgU⁽¹⁾ (in fact, the subcategory of *n*-positive unital maps is as well for all $n \ge 2$).

fdC*-AlgCPU is also an S-positive subcategory of **fdC*-AlgU**^ℚ (in fact, the subcategory of *n*-positive unital maps is as well for all $n \ge 2$).

Question

Is fdC*-AlgSPU the largest S-positive subcategory of fdC*-AlgU^Q?

fdC*-AlgCPU is an S-positive subcategory of fdC*-AlgU^ℚ

fdC*-AlgCPU is also an S-positive subcategory of **fdC*-AlgU** $^{\Diamond}$ (in fact, the subcategory of *n*-positive unital maps is as well for all $n \geq 2$).

Question

Is fdC*-AlgSPU the largest S-positive subcategory of fdC*-AlgU[∅]?

Question

Are there diagrammatic axioms that characterize the subcategory **fdC*-AlgPU** of positive unital maps inside **fdC*-AlgU**⁰?

fdC*-AlgCPU is an S-positive subcategory of fdC*-AlgU^ℚ

fdC*-AlgCPU is also an S-positive subcategory of **fdC*-AlgU** $^{\Diamond}$ (in fact, the subcategory of *n*-positive unital maps is as well for all $n \geq 2$).

Question

Is fdC*-AlgSPU the largest S-positive subcategory of fdC*-AlgU[∅]?

Question

Are there diagrammatic axioms that characterize the subcategory fdC*-AlgPU of positive unital maps inside fdC*-AlgU[§]?

Question

Which subcategories of **fdC*-AlgU**[∅] obey Fritz' first (before v. IV) notion of positive subcategory?

fdC*-AlgCPU is an S-positive ⊗-subcat of **fdC*-AlgU**⁽⁾

Since CP maps are S-positive, fdC^* -AlgCPU is an S-positive subcategory of fdC^* -AlgU $^{\Diamond}$.

fdC*-AlgCPU is an S-positive ⊗-subcat of **fdC*-AlgU**⁽⁾

Since CP maps are S-positive, fdC^* -AlgCPU is an S-positive subcategory of fdC^* -AlgU $^{\lozenge}$. Unlike fdC^* -AlgSPU, however, fdC^* -AlgCPU is closed under the tensor product. Thus, fdC^* -AlgCPU is an S-positive *monoidal* subcategory of fdC^* -AlgU $^{\lozenge}$.

fdC*-AlgCPU is an S-positive ⊗-subcat of **fdC*-AlgU**⁽⁾

Since CP maps are S-positive, fdC^* -AlgCPU is an S-positive subcategory of fdC^* -AlgU $^{\lozenge}$. Unlike fdC^* -AlgSPU, however, fdC^* -AlgCPU is closed under the tensor product. Thus, fdC^* -AlgCPU is an S-positive *monoidal* subcategory of fdC^* -AlgU $^{\lozenge}$.

Question

Is **fdC*-AlgCPU** the largest S-positive monoidal subcategory of **fdC*-AlgU**[§]?

A no-cloning theorem for S-positive subcategories

Theorem (No broadcasting for S-positive subcategories)

Let $\mathcal P$ be an S-positive subcategory of a quantum Markov category $\mathcal M$ containing the morphisms $\bar{\overline{+}}$, $\bar{\overline{+}}$ |, and $|\bar{\overline{+}}$ for each object in $\mathcal P$.

A no-cloning theorem for S-positive subcategories

Theorem (No broadcasting for S-positive subcategories)

Let $\mathcal P$ be an S-positive subcategory of a quantum Markov category $\mathcal M$ containing the morphisms $\bar{\overline{+}}$, $\bar{\overline{+}}$, and $|\bar{\overline{+}}$ for each object in $\mathcal P$. In addition, suppose that $\mathcal P$ contains a morphism $|\bar{\overline{+}}|$ satisfying

for every object in \mathcal{P} .

A no-cloning theorem for S-positive subcategories

Theorem (No broadcasting for S-positive subcategories)

Let $\mathcal P$ be an S-positive subcategory of a quantum Markov category $\mathcal M$ containing the morphisms $\bar{\overline{+}}$, $\bar{\overline{+}}$ $\Big|$, and $\Big|$ $\bar{\overline{+}}$ for each object in $\mathcal P$. In addition, suppose that $\mathcal P$ contains a morphism $\Big|$ satisfying

∢ロト (個) (重) (重) (重) のQで

Since
$$=$$
 $=$ $=$ $=$ $=$, which is deterministic, S-positivity gives

Since
$$=$$
 $=$ $=$ $=$ $=$, which is deterministic, S-positivity gives

Since
$$=$$
 $=$ $=$ $=$, which is deterministic, S-positivity gives

Since
$$=$$
 $=$ $=$ $=$ $=$, which is deterministic, S-positivity gives

Since
$$=$$
 $=$ $=$ $=$ $=$, which is deterministic, S-positivity gives

Since
$$=$$
 $=$ $=$ $=$ $=$, which is deterministic, S-positivity gives

$$= \frac{1}{\sqrt{1+\frac{1}{2}}} \frac{SP}{\sqrt{1+\frac{1}{2}}} = \sqrt{1+\frac{1}{2}} \frac{SP}{\sqrt{1+\frac{1}{2}}} \frac{SP}{\sqrt{1+\frac{1}{2}}} = \sqrt{1+\frac{1}{2}} \frac{SP}{\sqrt{1+\frac{1}{2}}} \frac{SP}{\sqrt{1+\frac{1}{2}}} = \sqrt{1+\frac{1}{2}} \frac{SP}{\sqrt{1+\frac{1}{2}}} = \sqrt$$

Since
$$=$$
 $=$ $=$ $=$, which is deterministic, S-positivity gives

$$= \overline{\uparrow} = \overline{\uparrow} = \overline{\uparrow} = \overline{\uparrow} = \overline{\uparrow}$$

Since
$$=$$
 $=$ $=$ $=$, which is deterministic, S-positivity gives

$$= \frac{1}{\sqrt{2}} = \frac$$

which reproduces the commuting axiom since $\checkmark = \checkmark$.

- ◀ ㅁ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ ◀ 볼 ▶ ♥ Q @

Theorem (P. 2001.08375 [quant-ph])

Let \mathcal{A} and \mathcal{B} be C^* -algebras, let $F, G : \mathcal{B} \leadsto \mathcal{A}$ be two linear maps, and let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state (a PU map). Then the following are equivalent.

Theorem (P. 2001.08375 [quant-ph])

Let \mathcal{A} and \mathcal{B} be C^* -algebras, let $F, G : \mathcal{B} \leadsto \mathcal{A}$ be two linear maps, and let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state (a PU map). Then the following are equivalent.

i. F(b)-G(b) is in the null space $\mathcal{N}_{\omega}:=\{a\in\mathcal{A}: \omega(a^*a)=0\}$ of ω for all $b\in\mathcal{B}$

Theorem (P. 2001.08375 [quant-ph])

Let \mathcal{A} and \mathcal{B} be C^* -algebras, let $F, G : \mathcal{B} \leadsto \mathcal{A}$ be two linear maps, and let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state (a PU map). Then the following are equivalent.

i. F(b) - G(b) is in the null space $\mathcal{N}_{\omega} := \{a \in \mathcal{A} : \omega(a^*a) = 0\}$ of ω for all $b \in \mathcal{B}$.

ii.

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 釣り(で)

Theorem (P. 2001.08375 [quant-ph])

Let \mathcal{A} and \mathcal{B} be C^* -algebras, let $F, G : \mathcal{B} \leadsto \mathcal{A}$ be two linear maps, and let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state (a PU map). Then the following are equivalent.

i. F(b) - G(b) is in the null space $\mathcal{N}_{\omega} := \{a \in \mathcal{A} : \omega(a^*a) = 0\}$ of ω for all $b \in \mathcal{B}$.

ii.

In this case, F is said to be ω -a.e. equivalent to G.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Almost everywhere equivalence F = G

Theorem (P. 2001.08375 [quant-ph])

Let \mathcal{A} and \mathcal{B} be C^* -algebras, let $F, G : \mathcal{B} \leadsto \mathcal{A}$ be two linear maps, and let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state (a PU map). Then the following are equivalent.

i. F(b) - G(b) is in the null space $\mathcal{N}_{\omega} := \{a \in \mathcal{A} : \omega(a^*a) = 0\}$ of ω for all $b \in \mathcal{B}$.

ii.

In this case, F is said to be ω -a.e. equivalent to G. The first definition appears in 1907.09689 [quant-ph] and the second (for ordinary Markov categories) is due to Cho–Jacobs 1709.00322 [cs.Al].

4□ > 4団 > 4틸 > 4틸 > 열 → 90

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \stackrel{p}{\leadsto} X$ be a probability measure, and let $X \stackrel{f}{\leadsto} Y$ be a stochastic map.

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \stackrel{p}{\leadsto} X$ be a probability measure, and let $X \stackrel{f}{\leadsto} Y$ be a stochastic map. Then there exists a stochastic map $Y \stackrel{g}{\leadsto} X$ such that

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \stackrel{p}{\leadsto} X$ be a probability measure, and let $X \stackrel{f}{\leadsto} Y$ be a stochastic map. Then there exists a stochastic map $Y \stackrel{g}{\leadsto} X$ such that

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \stackrel{p}{\leadsto} X$ be a probability measure, and let $X \stackrel{f}{\leadsto} Y$ be a stochastic map. Then there exists a stochastic map $Y \stackrel{g}{\leadsto} X$ such that

where $\{\bullet\} \stackrel{q}{\leadsto} Y$ is given by $q := f \circ p$.

4 D > 4 D > 4 E > 4 E > E 900

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \stackrel{p}{\leadsto} X$ be a probability measure, and let $X \stackrel{f}{\leadsto} Y$ be a stochastic map. Then there exists a stochastic map $Y \stackrel{g}{\leadsto} X$ such that

where $\{\bullet\} \stackrel{q}{\leadsto} Y$ is given by $q := f \circ p$. Furthermore, for any other g' satisfying this condition, g = g'.

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \stackrel{p}{\leadsto} X$ be a probability measure, and let $X \stackrel{f}{\leadsto} Y$ be a stochastic map. Then there exists a stochastic map $Y \stackrel{g}{\leadsto} X$ such that

$$X \mid Y$$
 $X \mid Y$ $f \mid f$

where $\{\bullet\} \stackrel{q}{\leadsto} Y$ is given by $q := f \circ p$. Furthermore, for any other g' satisfying this condition, g = g'.

You can watch my video explaining why I call this Bayes' theorem here.

The previous theorem motivates the following definition.

The previous theorem motivates the following definition.

Definition

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a CPU map, let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state, and set $\xi := \omega \circ F$.

A **Bayesian inverse** of F is a CPU map $\mathcal{A} \stackrel{G}{\leadsto} \mathcal{B}$ such that

The previous theorem motivates the following definition.

Definition

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a CPU map, let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state, and set $\xi := \omega \circ F$.

A **Bayesian inverse** of F is a CPU map $\mathcal{A} \stackrel{G}{\leadsto} \mathcal{B}$ such that

The existence of Bayesian inverses is not guaranteed for CPU maps between finite-dimensional C^* -algebras.

→ロト → □ ト → 三 ト → 三 ・ りへで

The previous theorem motivates the following definition.

Definition

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$ be a CPU map, let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state, and set $\xi := \omega \circ F$.

A **Bayesian inverse** of F is a CPU map $\mathcal{A} \stackrel{G}{\leadsto} \mathcal{B}$ such that

The existence of Bayesian inverses is not guaranteed for CPU maps between finite-dimensional C^* -algebras. A linear algebraic theorem characterizing its existence in **fdC*-AlgCPU** is given in 2005.03886 [quant-ph] (joint with Russo).

000.00000 [quant pii] (Joint With Russo).

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

- i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.
- ii. If G is a Bayesian inverse of (F, ω) , then it is necessarily ξ -a.e. unique.

4 D > 4 D > 4 B > 4 B > B 9 Q P

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

- i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.
- ii. If G is a Bayesian inverse of (F, ω) , then it is necessarily ξ -a.e. unique.
- iii. If F is a *-isomorphism, then $G = F^{-1}$ is a Bayesian inverse of (F, ω) .

401401401000

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

- i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.
- ii. If G is a Bayesian inverse of (F, ω) , then it is necessarily ξ -a.e. unique.
- iii. If F is a *-isomorphism, then $G = F^{-1}$ is a Bayesian inverse of (F, ω) .
- iv. The composite of Bayesian inverses is a Bayesian inverse of the composite.

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

- i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.
- ii. If G is a Bayesian inverse of (F, ω) , then it is necessarily ξ -a.e. unique.
- iii. If F is a *-isomorphism, then $G = F^{-1}$ is a Bayesian inverse of (F, ω) .
- iv. The composite of Bayesian inverses is a Bayesian inverse of the composite.
- v. A Bayesian inverse of a Bayesian inverse is a.e. equivalent to the original map.

→ロト→部ト→注ト→注 → ○

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

- i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.
- ii. If G is a Bayesian inverse of (F,ω) , then it is necessarily ξ -a.e. unique.
- iii. If F is a *-isomorphism, then $G = F^{-1}$ is a Bayesian inverse of (F, ω) .
- iv. The composite of Bayesian inverses is a Bayesian inverse of the composite.
- v. A Bayesian inverse of a Bayesian inverse is a.e. equivalent to the original map.
- vi. A tensor product of Bayesian inverses is a Bayesian inverse of the tensor product.

- 4日 > 4日 > 4日 > 4日 > 4日 > 日 の 9

Definition

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before.

Definition

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F, ω) is a CPU map $\mathcal{A} \stackrel{\mathcal{G}}{\leadsto} \mathcal{B}$ such that

Definition

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F,ω) is a CPU map $\mathcal{A} \stackrel{\mathcal{G}}{\leadsto} \mathcal{B}$ such that $\xi \circ G = \omega$ and $G \circ F = id_{\mathcal{B}}$.

$$\xi \circ \mathbf{G} = \omega$$

$$G \circ F = \mathrm{id}_{\mathcal{B}}$$

Definition

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F, ω) is a CPU map $\mathcal{A} \stackrel{G}{\leadsto} \mathcal{B}$ such that

$$\xi \circ G = \omega$$
 and $G \circ F = id_{\mathcal{B}}$.

Theorem (P. 2001.08375 [quant-ph])

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

Definition

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F, ω) is a CPU map $\mathcal{A} \stackrel{\mathcal{G}}{\leadsto} \mathcal{B}$ such that

$$\xi \circ G = \omega$$
 and $G \circ F = id_{\mathcal{B}}$.

Theorem (P. 2001.08375 [quant-ph])

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before.

i. If (F, ω) has a disintegration, then F is ω -a.e. deterministic (see paper for definition).

Definition

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F, ω) is a CPU map $\mathcal{A} \stackrel{\mathcal{G}}{\leadsto} \mathcal{B}$ such that

$$\xi \circ G = \omega$$
 and $G \circ F = id_{\mathcal{B}}$.

Theorem (P. 2001.08375 [quant-ph])

Let $\mathcal{B} \stackrel{F}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before.

- i. If (F, ω) has a disintegration, then F is ω -a.e. deterministic (see paper for definition).
- ii. If (F, ω) has a disintegration G, then G is a Bayesian inverse of (F, ω) .

Definition

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F, ω) is a CPU map $\mathcal{A} \stackrel{\mathcal{G}}{\leadsto} \mathcal{B}$ such that

$$\xi \circ G = \omega$$
 and $G \circ F = id_{\mathcal{B}}$.

Theorem (P. 2001.08375 [quant-ph])

Let $\mathcal{B} \stackrel{\mathcal{F}}{\leadsto} \mathcal{A}$, $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$, and $\xi := \omega \circ \mathcal{F}$ be as before.

- i. If (F, ω) has a disintegration, then F is ω -a.e. deterministic (see paper for definition).
- ii. If (F, ω) has a disintegration G, then G is a Bayesian inverse of (F, ω) .
- iii. If F is deterministic and (F, ω) has a Bayesian inverse G, then G is a disintegration of (F, ω) .

- K. Cho and B. Jacobs "Disintegration and Bayesian Inversion via String Diagrams" 1709.00322 [cs.Al]
- T. Fritz "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics" 1908.07021 [math.ST]
- A. Parzygnat and B. Russo "Non-commutative disintegrations: existence and uniqueness in finite dimensions" 1907.09689 [quant-ph]
- A. Parzygnat "Inverses, disintegrations, and Bayesian inversion in quantum Markov categories" 2001.08375 [quant-ph]
- A. Parzygnat and B. Russo "A non-commutative Bayes' theorem" 2005.03886 [quant-ph]
- A. Parzygnat "Categorical probability theory" videos available at https://www.youtube.com/playlist?list= PLSx1kJDjrLRSKKHj4zetTZ45pVnGCRN80

All this and much more can be found in the following references.

- K. Cho and B. Jacobs "Disintegration and Bayesian Inversion via String Diagrams" 1709.00322 [cs.Al]
- T. Fritz "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics" 1908.07021 [math.ST]
- A. Parzygnat and B. Russo "Non-commutative disintegrations: existence and uniqueness in finite dimensions" 1907.09689 [quant-ph]
- A. Parzygnat "Inverses, disintegrations, and Bayesian inversion in quantum Markov categories" 2001.08375 [quant-ph]
- A. Parzygnat and B. Russo "A non-commutative Bayes' theorem" 2005.03886 [quant-ph]
- A. Parzygnat "Categorical probability theory" videos available at https://www.youtube.com/playlist?list= PLSx1kJDjrLRSKKHj4zetTZ45pVnGCRN80

Thank you!

