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Outline

About 90% of this talk is on https://arxiv.org/abs/2001.08375 and
the other 10% of this talk is based on joint work with Benjamin Russo at
SUNY Farmingdale in New York and is available at
https://arxiv.org/abs/1907.09689 and
https://arxiv.org/abs/2005.03886.
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Introducing fdC*-AlgUG fdC*-AlgUG as a category

fdC*-AlgUG as a category

The objects of fdC*-AlgUG are finite-dimensional unital C ∗-algebras,
which are all of the form (up to isomorphism)

A =
⊕
x∈X
Mmx ,

where X is a finite set and Mmx is the unital ∗-algebra of all mx ×mx

matrices equipped with the operator norm and conjugate transpose as the
involution ∗.

A morphism from B to A is either a linear unital map or a conjugate linear

unital map B F A. The latter means F (λb) = λF (b) for all λ ∈ C and
b ∈ B, where λ is the conjugate transpose of λ.
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Introducing fdC*-AlgUG fdC*-AlgUG as a Z2-graded ⊗-category

Tensor products in fdC*-AlgUG?

You can take the tensor product of linear maps to get a linear map,

you can take the tensor product of conjugate linear maps to get a
conjugate linear map,
but you can’t take the tensor product of a linear map and a conjugate
linear to get one or the other. Indeed if F is conjugate linear and G is
linear then

(F ⊗ G )(x ⊗ λy)(F ⊗ G )(λx ⊗ y)

F (x)⊗ λG (y)F (λx)⊗ G (y)

F (x)⊗ λG (y)λF (x)⊗ G (y)
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Introducing fdC*-AlgUG fdC*-AlgUG as a Z2-graded ⊗-category

fdC*-AlgUG as a Z2-graded ⊗-category

Thus, fdC*-AlgUG is not a monoidal category with the usual tensor
product. Instead, we can only take the tensor product of “even”
morphisms (linear maps) and “odd” morphisms (conjugate linear maps).

There is also a unit I equipped with an even and odd morphism that act
as an identity for the Z2-monoidal structure.
This can be made precise with the notion of G -graded monoidal categories
of Fröhlich and Wall.

Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 7 / 46



Introducing fdC*-AlgUG fdC*-AlgUG as a Z2-graded ⊗-category

fdC*-AlgUG as a Z2-graded ⊗-category

Thus, fdC*-AlgUG is not a monoidal category with the usual tensor
product. Instead, we can only take the tensor product of “even”
morphisms (linear maps) and “odd” morphisms (conjugate linear maps).
There is also a unit I equipped with an even and odd morphism that act
as an identity for the Z2-monoidal structure.

This can be made precise with the notion of G -graded monoidal categories
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Quantum and classical Markov categories Quantum Markov categories

Quantum Markov categories

Definition

A quantum Markov category (QMC) is a Z2-monoidal category M
together with a family of morphisms copy µA : A⊗A //A, discard
!A : I //A, and involve ∗A : A //A, all depicted in string diagram
notation as

µA ≡
A

, !A ≡ A
, and ∗A ≡

A
,

for all objects A in M. These morphisms are required to satisfy several
conditions.
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Quantum and classical Markov categories Quantum Markov categories

QMC String diagrams

= = = =

A⊗ B = A B I = A⊗ B =
A B

=
A⊗ B

=
A B

=

I
= even = odd =
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Quantum and classical Markov categories Quantum Markov categories

QMC String diagrams for fdC*-AlgUG

1Aa = a = a1A = =

A⊗ B = A B I = A⊗ B =
A B

=
A⊗ B

=
A B

=

I
= even = odd =
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A B
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Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 20 / 46



Quantum and classical Markov categories Quantum Markov categories
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Quantum and classical Markov categories (Classical) Markov categories

(Classical) Markov categories

If there is a subcategory C of M that is also a quantum Markov category
but satisfies, in addition,

= (`)

for all objects in C, then Ceven is said to be a classical Markov
subcategory of M.

Thus,

∗2=id
===

`
== =

∗2=id
=== ,

which reproduces the usual definition of a Markov category. In the case of
fdC*-AlgUG, the subcategory of commutative finite-dimensional
C ∗-algebras and positive unital maps (defined shortly) is equivalent to
FinStochop, the category of finite sets and stochastic maps.
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Subcategories of fdC*-AlgUG Many kinds of positivity

Positive maps

fdC*-AlgUG has several important subcategories.

Definition

An element of a C ∗-algebra A is positive iff it equals a∗a for some a ∈ A.
A linear map F : B //A is positive iff it sends positive elements to
positive elements.

Example

For matrix algebras, a matrix is positive if and only if it is self-adjoint and
its eigenvalues are non-negative. The transpose map
Mm 3 A 7→ AT ∈Mm is positive unital.

Let fdC*-AlgPU denote the subcategory of fdC*-AlgUG consisting of the
same objects as fdC*-AlgUG but the morphisms are only all the positive
unital (PU) maps.
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Subcategories of fdC*-AlgUG Many kinds of positivity

Schwarz positive maps

Definition

A linear map F : B //A is Schwarz positive (SP) iff it satisfies
F (b∗b) ≥ ‖F (1B)‖F (b)∗F (b) for all b ∈ B.

Every Schwarz positive map is positive, but the converse is not true!

Example

The map F :M2
//M2 given by taking the transpose, namely

F (b) := bT , is positive unital but not Schwarz positive. Indeed,

F (b∗b) = ([ 0 1
0 0 ] [ 0 0

1 0 ])
T

= [ 1 0
0 0 ], while F (b)∗F (b) = [ 0 0

1 0 ] [ 0 1
0 0 ] = [ 0 0

0 1 ] .

Let fdC*-AlgSPU denote the subcategory of fdC*-AlgPU consisting of
the same objects as fdC*-AlgPU but the morphisms are only all the
Schwarz positive unital (SPU) maps.
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Subcategories of fdC*-AlgUG Many kinds of positivity

Completely positive maps

Definition

A linear map F : B //A is n-positive iff
idMn ⊗ F :Mn ⊗B //Mn ⊗A is positive.

F is completely positive iff
F is n-positive for all n ∈ N.

Every n-positive map is (n − 1) positive, and every 2-positive map is
Schwarz positive, but not every Schwarz positive map is 2-positive!

Example (Choi 1980)

The map F :M2
//M2 given by F (b) := 1

2b
T + 1

4tr(b)12 is Schwarz
positive unital but not 2-positive.

Let fdC*-AlgCPU denote the subcategory of fdC*-AlgSPU consisting of
the same objects as fdC*-AlgSPU but the morphisms are only all the
completely positive unital maps.
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Subcategories of fdC*-AlgUG The deterministic subcategory

The deterministic subcategory

Definition

A linear map F : B → A is a ∗-homomorphism (or deterministic) iff
F (bb′) = F (b)F (b′) and F (b)∗ = F (b∗).

In string diagrams:

A

F

B B

=

A

F F

B B

and

A

F

B

= F

A

B

All ∗-homomorphisms are completely positive, but there are completely
positive maps that are not ∗-homomorphisms. Let fdC*-AlgDU be the
subcategory of fdC*-AlgCPU consisting of deterministic unital maps only.
Thus, we have a hierarchy of notions of positivity.

fdC*-AlgDU ⊆ fdC*-AlgCPU ⊆ fdC*-AlgSPU ⊆ fdC*-AlgPU.
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Fritz’ definition of a positive Markov category

In his first draft of “A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics,” Fritz defined a
positive Markov category:
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Schwarz-positive subcategories Fritz’ definition of a positive Markov category

Fritz’ definition of a positive Markov category

I begun my work on the relationship between disintegrations and Bayesian
inversion roughly in May 2019.

When Fritz’ paper came out in August, I
immediately tried checking if fdC*-AlgCPU was positive (as a subcategory

of fdC*-AlgUG). But I couldn’t prove it! Two months later, Fritz had
updated his definition (which I just adapted to the QMC context):

Definition

Let M be a quantum Markov category. A subcategory P ⊆Meven is said
to be S-positive in M iff for every pair of composable morphisms

C G B F A in P such that F ◦ G is deterministic, then

F

G

C B

A

= F

G

F

C B

A
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Schwarz-positive subcategories fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG

Why am I calling this condition S-positivity instead of Fritz’ terminology of
just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG.

But... fdC*-AlgPU is not an S-positive subcategory of fdC*-AlgUG!
Indeed, the transpose map F :Mm

//Mm composed with itself is the
identity, and is therefore deterministic, but

F

F
?

== F

F

F
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Why am I calling this condition S-positivity instead of Fritz’ terminology of
just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG.

But... fdC*-AlgPU is not a positive subcategory of fdC*-AlgUG! Indeed,
the transpose map F :Mm

//Mm composed with itself is the identity,
and is therefore deterministic, but

a⊗ b

aTb

bTa

_

��

_

�� F

F

6= F

F

F

a⊗ b

a⊗ bT

abT

_

��

_
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I think the proof is neat so let’s try it out. It rests on something called the
“Multiplication Theorem” for Schwarz positive maps.

Lemma (The Multiplication Theorem)

Let B ϕ A be an SPU map between C ∗-algebras. Suppose that
ϕ(b∗b) = ϕ(b)∗ϕ(b) for some b ∈ B. Then

ϕ(b∗c) = ϕ(b)∗ϕ(c) and ϕ(c∗b) = ϕ(c)∗ϕ(b) ∀ c ∈ B.

Now, our goal is to prove

F

G

C B

A

F
(
G (c)b

)
= F

(
G (c)

)
F (b) F

G

F

C B

A
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Let C G B F A be a pair of composable SPU maps of C ∗-algebras
such that the composite F ◦ G is a ∗-homomorphism.

Then,

F
(
G (c)∗G (c)

)
≤ F

(
G (c∗c)

)
by S-positivity of G

= F
(
G (c)

)∗
f
(
G (c)

)
since F ◦ G is deterministic

≤ F
(
G (c)∗G (c)

)
by S-positivity of F

holds for all c ∈ C. Thus, all inequalities become equalities. In particular,

F
(
G (c)∗G (c)

)
= F

(
G (c)

)∗
F
(
G (c)

)
∀ c ∈ C.

By the Multiplicative Theorem, this implies

F
(
G (c)∗b

)
= F

(
G (c)

)∗
F (b) ∀ c ∈ C, b ∈ B.

Since F and G are ∗-preserving (natural with respect to ∗) and ∗ is an
involution, this reproduces the required condition.
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Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 35 / 46



Schwarz-positive subcategories fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG

Let C G B F A be a pair of composable SPU maps of C ∗-algebras
such that the composite F ◦ G is a ∗-homomorphism. Then,

F
(
G (c)∗G (c)

)
≤ F

(
G (c∗c)

)
by S-positivity of G

= F
(
G (c)

)∗
F
(
G (c)

)
since F ◦ G is deterministic

≤ F
(
G (c)∗G (c)

)
by S-positivity of F

holds for all c ∈ C. Thus, all inequalities become equalities. In particular,

F
(
G (c)∗G (c)

)
= F

(
G (c)

)∗
F
(
G (c)

)
∀ c ∈ C.

By the Multiplicative Theorem, this implies

F
(
G (c)∗b

)
= F

(
G (c)

)∗
F (b) ∀ c ∈ C, b ∈ B.

Since F and G are ∗-preserving (natural with respect to ∗) and ∗ is an
involution, this reproduces the required condition.
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Schwarz-positive subcategories fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgUG

fdC*-AlgCPU is an S-positive subcategory of fdC*-AlgUG

fdC*-AlgCPU is also an S-positive subcategory of fdC*-AlgUG (in fact,
the subcategory of n-positive unital maps is as well for all n ≥ 2).

Question

Is fdC*-AlgSPU the largest S-positive subcategory of fdC*-AlgUG?

Question

Are there diagrammatic axioms that characterize the subcategory
fdC*-AlgPU of positive unital maps inside fdC*-AlgUG?

Question

Which subcategories of fdC*-AlgUG obey Fritz’ first (before v. IV) notion
of positive subcategory?
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fdC*-AlgCPU is an S-positive ⊗-subcat of fdC*-AlgUG

Since CP maps are S-positive, fdC*-AlgCPU is an S-positive subcategory
of fdC*-AlgUG.

Unlike fdC*-AlgSPU, however, fdC*-AlgCPU is closed
under the tensor product. Thus, fdC*-AlgCPU is an S-positive monoidal
subcategory of fdC*-AlgUG.

Question

Is fdC*-AlgCPU the largest S-positive monoidal subcategory of
fdC*-AlgUG?
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Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 37 / 46



Schwarz-positive subcategories fdC*-AlgCPU is an S-positive ⊗-subcat of fdC*-AlgUG

A no-cloning theorem for S-positive subcategories

Theorem (No broadcasting for S-positive subcategories)

Let P be an S-positive subcategory of a quantum Markov category M
containing the morphisms , , and for each object in P.

In

addition, suppose that P contains a morphism satisfying

= =

for every object in P. Then is commutative and in fact equals

duplication for every object of P.

Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 38 / 46



Schwarz-positive subcategories fdC*-AlgCPU is an S-positive ⊗-subcat of fdC*-AlgUG

A no-cloning theorem for S-positive subcategories

Theorem (No broadcasting for S-positive subcategories)

Let P be an S-positive subcategory of a quantum Markov category M
containing the morphisms , , and for each object in P. In

addition, suppose that P contains a morphism satisfying

= =

for every object in P.

Then is commutative and in fact equals

duplication for every object of P.
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Schwarz-positive subcategories fdC*-AlgCPU is an S-positive ⊗-subcat of fdC*-AlgUG

Proof of no-cloning for S-positive subcategories

Since = = , which is deterministic, S-positivity gives

=
SP
== = =

SP
== = ,

which reproduces the commuting axiom since = .
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Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 39 / 46



Schwarz-positive subcategories fdC*-AlgCPU is an S-positive ⊗-subcat of fdC*-AlgUG

Proof of no-cloning for S-positive subcategories

Since = = , which is deterministic, S-positivity gives

=
SP
== = =

SP
== = ,

which reproduces the commuting axiom since = .
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Disintegrations and Bayesian inversion Almost surely

Almost everywhere equivalence F =
ω
G

Theorem (P. 2001.08375 [quant-ph])

Let A and B be C ∗-algebras, let F ,G : B //A be two linear maps, and
let A ω C be a state (a PU map). Then the following are equivalent.

i. F (b)− G (b) is in the null space Nω := {a ∈ A : ω(a∗a) = 0} of ω
for all b ∈ B.

ii.

ω

F

=

ω

G

.

In this case, F is said to be ω-a.e. equivalent to G . The first definition
appears in 1907.09689 [quant-ph] and the second (for ordinary Markov
categories) is due to Cho–Jacobs 1709.00322 [cs.AI].
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Disintegrations and Bayesian inversion Bayesian inversion

Bayes’ theorem

Theorem (Bayes’ theorem)

Let X and Y be finite sets, let {•} p
X be a probability measure, and

let X f Y be a stochastic map.

Then there exists a stochastic map

Y
g

X such that

q

g

X Y

=

p

f

X Y

,

where {•} q
Y is given by q := f ◦ p. Furthermore, for any other g ′

satisfying this condition, g =
q
g ′.

You can watch my video explaining why I call this Bayes’ theorem here.
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Disintegrations and Bayesian inversion Bayesian inversion

Bayesian inverses

The previous theorem motivates the following definition.

Definition

Let B F A be a CPU map, let A ω C be a state, and set ξ := ω ◦ F .

A Bayesian inverse of F is a CPU map A G B such that

ξ

G

A B

=

ω

F

A B

.

The existence of Bayesian inverses is not guaranteed for CPU maps
between finite-dimensional C ∗-algebras. A linear algebraic theorem
characterizing its existence in fdC*-AlgCPU is given in
2005.03886 [quant-ph] (joint with Russo).
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Disintegrations and Bayesian inversion Bayesian inversion

Properties of Bayesian inversion

Nevertheless, when they exist, Bayesian inverses satisfy many convenient
properties.

Theorem

Let B F A, A ω C, and ξ := ω ◦ F be as before.

i. If G is a Bayesian inverse of (F , ω), then ω = ξ ◦ G.
ii. If G is a Bayesian inverse of (F , ω), then it is necessarily ξ-a.e. unique.
iii. If F is a ∗-isomorphism, then G = F−1 is a Bayesian inverse of (F , ω).
iv. The composite of Bayesian inverses is a Bayesian inverse of the

composite.
v. A Bayesian inverse of a Bayesian inverse is a.e. equivalent to the

original map.
vi. A tensor product of Bayesian inverses is a Bayesian inverse of the

tensor product.
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Disintegrations and Bayesian inversion Disintegrations

Disintegrations

Definition

Let B F A, A ω C, and ξ := ω ◦ F be as before.

A disintegration of

(F , ω) is a CPU map A G B such that

ξ ◦ G = ω and G ◦ F =
ξ
idB.

Theorem (P. 2001.08375 [quant-ph])

Let B F A, A ω C, and ξ := ω ◦ F be as before.

i. If (F , ω) has a disintegration, then F is ω-a.e. deterministic (see paper
for definition).

ii. If (F , ω) has a disintegration G, then G is a Bayesian inverse of (F , ω).
iii. If F is deterministic and (F , ω) has a Bayesian inverse G, then G is a

disintegration of (F , ω).
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Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 June 7 44 / 46

https://arxiv.org/abs/2001.08375


Disintegrations and Bayesian inversion Disintegrations

Disintegrations

Definition

Let B F A, A ω C, and ξ := ω ◦ F be as before. A disintegration of

(F , ω) is a CPU map A G B such that

ξ ◦ G = ω and G ◦ F =
ξ
idB.

Theorem (P. 2001.08375 [quant-ph])

Let B F A, A ω C, and ξ := ω ◦ F be as before.

i. If (F , ω) has a disintegration, then F is ω-a.e. deterministic (see paper
for definition).

ii. If (F , ω) has a disintegration G, then G is a Bayesian inverse of (F , ω).
iii. If F is deterministic and (F , ω) has a Bayesian inverse G, then G is a

disintegration of (F , ω).
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All this and much more can be found in the following references.

K. Cho and B. Jacobs “Disintegration and Bayesian Inversion via
String Diagrams” 1709.00322 [cs.AI]

T. Fritz “A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics” 1908.07021
[math.ST]

A. Parzygnat and B. Russo “Non-commutative disintegrations:
existence and uniqueness in finite dimensions” 1907.09689 [quant-ph]

A. Parzygnat “Inverses, disintegrations, and Bayesian inversion in
quantum Markov categories” 2001.08375 [quant-ph]

A. Parzygnat and B. Russo “A non-commutative Bayes’ theorem”
2005.03886 [quant-ph]

A. Parzygnat “Categorical probability theory” videos available at
https://www.youtube.com/playlist?list=

PLSx1kJDjrLRSKKHj4zetTZ45pVnGCRN80

Thank you!
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