Categorical probability in the quantum realm

Arthur J. Parzygnat

IHÉS, France Categorical Probability and Statistics 2020 June 5–8

2020 June 7

Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm

• = • •

■ Introducing fdC*-AlgU⁽⁾

- 2 Quantum and classical Markov categories
- 3 Subcategories of fdC*-AlgU[◊]
- 4 Schwarz-positive subcategories
- 5 Disintegrations and Bayesian inversion

About 90% of this talk is on https://arxiv.org/abs/2001.08375 and the other 10% of this talk is based on joint work with Benjamin Russo at SUNY Farmingdale in New York and is available at https://arxiv.org/abs/1907.09689 and https://arxiv.org/abs/2005.03886.

fdC^*-AlgU^{i} as a category

The objects of $\mathbf{fdC^*}$ -AlgU⁽⁾ are finite-dimensional unital C^* -algebras, which are all of the form (up to isomorphism)

$$\mathcal{A} = \bigoplus_{x \in \mathcal{X}} \mathcal{M}_{m_x},$$

where X is a finite set and \mathcal{M}_{m_x} is the unital *-algebra of all $m_x \times m_x$ matrices equipped with the operator norm and conjugate transpose as the involution *.

A morphism from \mathcal{B} to \mathcal{A} is either a linear unital map or a *conjugate* linear unital map $\mathcal{B} \xrightarrow{F} \mathcal{A}$. The latter means $F(\lambda b) = \overline{\lambda}F(b)$ for all $\lambda \in \mathbb{C}$ and $b \in \mathcal{B}$, where $\overline{\lambda}$ is the conjugate transpose of λ .

Tensor products in $\mathbf{fdC^*}$ -AlgU^{\Diamond}?

You can take the tensor product of linear maps to get a linear map, you can take the tensor product of conjugate linear maps to get a conjugate linear map,

but you can't take the tensor product of a linear map and a conjugate linear to get one or the other. Indeed if F is conjugate linear and G is linear then

$$(F \otimes G)(\lambda x \otimes y) \qquad (F \otimes G)(x \otimes \lambda y)$$

$$F(\lambda x) \otimes G(y) \qquad F(x) \otimes \lambda G(y)$$

$$\overline{\lambda}F(x) \otimes G(y) \qquad F(x) \otimes \lambda G(y)$$

fdC^*-AlgU^{0} as a \mathbb{Z}_2 -graded \otimes -category

Thus, $\mathbf{fdC^*}$ -**AlgU**^{\emptyset} is not a monoidal category with the usual tensor product. Instead, we can only take the tensor product of "even" morphisms (linear maps) and "odd" morphisms (conjugate linear maps). There is also a unit *I* equipped with an even and odd morphism that act as an identity for the \mathbb{Z}_2 -monoidal structure. This can be made precise with the notion of *G*-graded monoidal categories of Fröhlich and Wall.

Quantum Markov categories

Definition

A quantum Markov category (QMC) is a \mathbb{Z}_2 -monoidal category \mathcal{M} together with a family of morphisms copy $\mu_{\mathcal{A}} : \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$, discard $!_{\mathcal{A}} : I \longrightarrow \mathcal{A}$, and involve $*_{\mathcal{A}} : \mathcal{A} \longrightarrow \mathcal{A}$, all depicted in string diagram notation as

$$\mu_{\mathcal{A}} \equiv \bigvee_{\mathcal{A}} \quad , \quad !_{\mathcal{A}} \equiv \stackrel{=}{\mid}_{\mathcal{A}} \quad , \text{ and } \quad *_{\mathcal{A}} \equiv \bigvee_{\mathcal{A}}$$

for all objects ${\mathcal A}$ in ${\mathcal M}.$ These morphisms are required to satisfy several conditions.

Quantum Markov categories

QMC String diagrams

QMC String diagrams for $\mathbf{fdC^*}$ -AlgU^{\Diamond}

$$1_{\mathcal{A}}a = a = a1_{\mathcal{A}}$$
 $(a_1a_2)a_3 = a_1(a_2a_3)$ $a_2^*a_1^* = (a_1a_2)^*$

$$1_{\mathcal{A}\otimes\mathcal{B}} \ = \ 1_{\mathcal{A}}\otimes 1_{\mathcal{B}} \qquad \quad !_{\mathbb{C}}(\lambda) \ = \ \lambda \quad (\mathsf{a}\otimes b)(\mathsf{a}'\otimes b') = (\mathsf{a}\mathsf{a}')\otimes (bb')$$

$$(a^*)^* = a$$
 $(a \otimes b)^* = a^* \otimes b^*$ $(\lambda 1_{\mathcal{A}})^* = \overline{\lambda} 1_{\mathcal{A}}$

$$\mu_{\mathbb{C}}(\lambda \otimes \lambda') = \lambda \lambda' \qquad f_{\mathsf{even}}(\lambda \mathbf{1}_{\mathcal{B}}) = \lambda \mathbf{1}_{\mathcal{A}} \quad f_{\mathsf{odd}}(\lambda \mathbf{1}_{\mathcal{B}}) = \overline{\lambda} \mathbf{1}_{\mathcal{A}}$$

Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm

イロト イポト イヨト イヨト

(Classical) Markov categories

If there is a subcategory ${\cal C}$ of ${\cal M}$ that is also a quantum Markov category but satisfies, in addition,

for all objects in ${\cal C},$ then ${\cal C}_{even}$ is said to be a classical Markov subcategory of ${\cal M}.$ Thus,

which reproduces the usual definition of a Markov category. In the case of $\mathbf{fdC^*}$ -AlgU^{\emptyset}, the subcategory of *commutative* finite-dimensional C^* -algebras and positive unital maps (defined shortly) is equivalent to **FinStoch**^{op}, the category of finite sets and stochastic maps.

Positive maps

 $fdC^*-AlgU^{(1)}$ has several important subcategories.

Definition

An element of a C^* -algebra \mathcal{A} is **positive** iff it equals a^*a for some $a \in \mathcal{A}$. A linear map $F : \mathcal{B} \longrightarrow \mathcal{A}$ is **positive** iff it sends positive elements to positive elements.

Example

For matrix algebras, a matrix is positive if and only if it is self-adjoint and its eigenvalues are non-negative. The transpose map $\mathcal{M}_m \ni A \mapsto A^T \in \mathcal{M}_m$ is positive unital.

Let **fdC*-AlgPU** denote the subcategory of **fdC*-AlgU**^{δ} consisting of the same objects as **fdC*-AlgU**^{δ} but the morphisms are only all the positive unital (PU) maps.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Schwarz positive maps

Definition

A linear map $F : \mathcal{B} \longrightarrow \mathcal{A}$ is **Schwarz positive** (SP) iff it satisfies $F(b^*b) \ge ||F(1_{\mathcal{B}})||F(b)^*F(b)$ for all $b \in \mathcal{B}$.

Every Schwarz positive map is positive, but the converse is not true!

Example

The map $F : \mathcal{M}_2 \longrightarrow \mathcal{M}_2$ given by taking the transpose, namely $F(b) := b^T$, is positive unital but not Schwarz positive. Indeed, $F(b^*b) = \left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right)^T = \begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}$, while $F(b)^*F(b) = \begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} = \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}$.

Let **fdC*-AlgSPU** denote the subcategory of **fdC*-AlgPU** consisting of the same objects as **fdC*-AlgPU** but the morphisms are only all the Schwarz positive unital (SPU) maps.

イロト 不得 トイヨト イヨト 二日

Completely positive maps

Definition

A linear map $F : \mathcal{B} \longrightarrow \mathcal{A}$ is *n*-positive iff $\operatorname{id}_{\mathcal{M}_n} \otimes F : \mathcal{M}_n \otimes \mathcal{B} \longrightarrow \mathcal{M}_n \otimes \mathcal{A}$ is positive. *F* is **completely positive** iff *F* is *n*-positive for all $n \in \mathbb{N}$.

Every *n*-positive map is (n-1) positive, and every 2-positive map is Schwarz positive, but not every Schwarz positive map is 2-positive!

Example (Choi 1980)

The map $F : \mathcal{M}_2 \longrightarrow \mathcal{M}_2$ given by $F(b) := \frac{1}{2}b^T + \frac{1}{4}\mathrm{tr}(b)\mathbb{1}_2$ is Schwarz positive unital but not 2-positive.

Let **fdC*-AlgCPU** denote the subcategory of **fdC*-AlgSPU** consisting of the same objects as **fdC*-AlgSPU** but the morphisms are only all the completely positive unital maps.

The deterministic subcategory

Definition

A linear map $F : \mathcal{B} \to \mathcal{A}$ is a *-homomorphism (or deterministic) iff F(bb') = F(b)F(b') and $F(b)^* = F(b^*)$. In string diagrams:

All *-homomorphisms are completely positive, but there are completely positive maps that are not *-homomorphisms. Let **fdC*-AlgDU** be the subcategory of **fdC*-AlgCPU** consisting of deterministic unital maps only. Thus, we have a hierarchy of notions of positivity.

$\mathsf{fdC*}\text{-}\mathsf{Alg}\mathsf{DU}\subseteq\mathsf{fdC*}\text{-}\mathsf{Alg}\mathsf{CPU}\subseteq\mathsf{fdC*}\text{-}\mathsf{Alg}\mathsf{SPU}\subseteq\mathsf{fdC*}\text{-}\mathsf{Alg}\mathsf{PU}.$

Fritz' definition of a positive Markov category

In his first draft of "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics," Fritz defined a positive Markov category:

11.19. Definition. We say that C is positive if the following condition holds: whenever

holds for any morphisms as indicated, then also

Fritz' definition of a positive Markov category

I begun my work on the relationship between disintegrations and Bayesian inversion roughly in May 2019. When Fritz' paper came out in August, I immediately tried checking if **fdC*-AlgCPU** was positive (as a subcategory of **fdC*-AlgU**^{δ}). But I couldn't prove it! Two months later, Fritz had updated his definition (which I just adapted to the QMC context):

Definition

Let \mathcal{M} be a quantum Markov category. A subcategory $\mathcal{P} \subseteq \mathcal{M}_{even}$ is said to be **S-positive** in \mathcal{M} iff for every pair of composable morphisms $\mathcal{C} \xrightarrow{G} \mathcal{B} \xrightarrow{F} \mathcal{A}$ in \mathcal{P} such that $F \circ G$ is deterministic, then

$fdC^*-AlgSPU$ is an S-positive subcategory of fdC^*-AlgU^{\Diamond}

Why am I calling this condition S-positivity instead of Fritz' terminology of just positivity?

Theorem (P. 2001.08375 [quant-ph])

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU[≬].

But... **fdC*-AlgPU** is *not* a positive subcategory of **fdC*-AlgU**^{$\check{\mathbb{V}}$}! Indeed, the transpose map $F : \mathcal{M}_m \longrightarrow \mathcal{M}_m$ composed with itself is the identity, and is therefore deterministic, but

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU⁰

I think the proof is neat so let's try it out. It rests on something called the "Multiplication Theorem" for Schwarz positive maps.

Lemma (The Multiplication Theorem)

Let $\mathcal{B} \xrightarrow{\varphi} \mathcal{A}$ be an SPU map between C^{*}-algebras. Suppose that $\varphi(b^*b) = \varphi(b)^*\varphi(b)$ for some $b \in \mathcal{B}$. Then

$$arphi(b^*c)=arphi(b)^*arphi(c) \quad ext{ and } \quad arphi(c^*b)=arphi(c)^*arphi(b) \qquad orall \ c\in \mathcal{B}.$$

Now, our goal is to prove

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

fdC*-AlgSPU is an S-positive subcategory of fdC*-AlgU⁰

Let $\mathcal{C} \xrightarrow{G} \mathcal{B} \xrightarrow{F} \mathcal{A}$ be a pair of composable SPU maps of C^* -algebras such that the composite $F \circ G$ is a *-homomorphism. Then,

$$\begin{split} F\big(G(c)^*G(c)\big) &\leq F\big(G(c^*c)\big) & \text{by S-positivity of } G \\ &= F\big(G(c)\big)^*F\big(G(c)\big) & \text{since } F \circ G \text{ is deterministic} \\ &\leq F\big(G(c)^*G(c)\big) & \text{by S-positivity of } F \end{split}$$

holds for all $c \in C$. Thus, all inequalities become equalities. In particular,

$$F(G(c)^*G(c)) = F(G(c))^*F(G(c)) \quad \forall c \in \mathcal{C}.$$

By the Multiplicative Theorem, this implies

$$F(G(c)^*b) = F(G(c))^*F(b) \quad \forall c \in C, b \in \mathcal{B}.$$

Since F and G are *-preserving (natural with respect to *) and * is an involution, this reproduces the required condition.

fdC*-AlgCPU is an S-positive subcategory of fdC*-AlgU⁰

fdC*-AlgCPU is also an S-positive subcategory of **fdC*-AlgU**^{\Diamond} (in fact, the subcategory of *n*-positive unital maps is as well for all $n \ge 2$).

Question

Is fdC*-AlgSPU the largest S-positive subcategory of fdC*-AlgU⁽⁾?

Question

Are there diagrammatic axioms that characterize the subcategory fdC*-AlgPU of positive unital maps inside fdC*-AlgU[§]?

Question

Which subcategories of \mathbf{fdC}^* -AlgU^{\emptyset} obey Fritz' first (before v. IV) notion of positive subcategory?

(日) (同) (三) (三)

$fdC^*-AlgCPU$ is an S-positive \otimes -subcat of fdC^*-AlgU^{\Diamond}

Since CP maps are S-positive, $fdC^*-AlgCPU$ is an S-positive subcategory of fdC^*-AlgU^{\emptyset} . Unlike $fdC^*-AlgSPU$, however, $fdC^*-AlgCPU$ is closed under the tensor product. Thus, $fdC^*-AlgCPU$ is an S-positive *monoidal* subcategory of fdC^*-AlgU^{\emptyset} .

Question

Is fdC*-AlgCPU the largest S-positive monoidal subcategory of fdC*-AlgU $^{\Diamond}$?

A no-cloning theorem for S-positive subcategories

Theorem (No broadcasting for S-positive subcategories) Let \mathcal{P} be an S-positive subcategory of a quantum Markov category \mathcal{M} containing the morphisms $\overline{\uparrow}$, $\overline{\uparrow}$ |, and | $\overline{\uparrow}$ for each object in \mathcal{P} . In addition, suppose that \mathcal{P} contains a morphism \checkmark satisfying

for every object in \mathcal{P} . Then \mathbf{P}' is commutative and in fact equals duplication for every object of \mathcal{P} .

Proof of no-cloning for S-positive subcategories

which reproduces the commuting axiom since $\forall r = \forall r$.

Almost everywhere equivalence F = G

Theorem (P. 2001.08375 [quant-ph])

Let \mathcal{A} and \mathcal{B} be C^* -algebras, let $F, G : \mathcal{B} \leadsto \mathcal{A}$ be two linear maps, and let $\mathcal{A} \stackrel{\omega}{\leadsto} \mathbb{C}$ be a state (a PU map). Then the following are equivalent.

i. F(b) - G(b) is in the null space $\mathcal{N}_{\omega} := \{a \in \mathcal{A} : \omega(a^*a) = 0\}$ of ω for all $b \in \mathcal{B}$.

ii.

In this case, F is said to be ω -a.e. equivalent to G. The first definition appears in 1907.09689 [quant-ph] and the second (for ordinary Markov categories) is due to Cho–Jacobs 1709.00322 [cs.Al].

Bayes' theorem

Theorem (Bayes' theorem)

Let X and Y be finite sets, let $\{\bullet\} \xrightarrow{p} X$ be a probability measure, and let $X \xrightarrow{f} Y$ be a stochastic map. Then there exists a stochastic map $Y \xrightarrow{g} X$ such that

where $\{\bullet\} \xrightarrow{q} Y$ is given by $q := f \circ p$. Furthermore, for any other g' satisfying this condition, g = g'.

You can watch my video explaining why I call this Bayes' theorem here.

Bayesian inverses

The previous theorem motivates the following definition.

Definition

Let $\mathcal{B} \xrightarrow{F} \mathcal{A}$ be a CPU map, let $\mathcal{A} \xrightarrow{\omega} \mathbb{C}$ be a state, and set $\xi := \omega \circ F$. A **Bayesian inverse** of F is a CPU map $\mathcal{A} \xrightarrow{G} \mathcal{B}$ such that

The existence of Bayesian inverses is not guaranteed for CPU maps between finite-dimensional C^* -algebras. A linear algebraic theorem characterizing its existence in **fdC*-AlgCPU** is given in 2005.03886 [quant-ph] (joint with Russo).

Properties of Bayesian inversion

Nevertheless, when they exist, Bayesian inverses satisfy many convenient properties.

Theorem

Let $\mathcal{B} \xrightarrow{F} \mathcal{A}$, $\mathcal{A} \xrightarrow{\omega} \mathbb{C}$, and $\xi := \omega \circ F$ be as before.

- i. If G is a Bayesian inverse of (F, ω) , then $\omega = \xi \circ G$.
- ii. If G is a Bayesian inverse of (F, ω) , then it is necessarily ξ -a.e. unique.
- iii. If F is a *-isomorphism, then $G = F^{-1}$ is a Bayesian inverse of (F, ω) .
- iv. The composite of Bayesian inverses is a Bayesian inverse of the composite.
- v. A Bayesian inverse of a Bayesian inverse is a.e. equivalent to the original map.
- vi. A tensor product of Bayesian inverses is a Bayesian inverse of the tensor product.

Disintegrations

Definition

Let $\mathcal{B} \xrightarrow{F} \mathcal{A}$, $\mathcal{A} \xrightarrow{\omega} \mathbb{C}$, and $\xi := \omega \circ F$ be as before. A **disintegration** of (F, ω) is a CPU map $\mathcal{A} \xrightarrow{G} \mathcal{B}$ such that $\xi \circ G = \omega$ and $G \circ F = \operatorname{id}_{\mathcal{B}}$.

Theorem (P. 2001.08375 [quant-ph])

Let $\mathcal{B} \xrightarrow{F} \mathcal{A}, \mathcal{A} \xrightarrow{\omega} \mathbb{C}$, and $\xi := \omega \circ F$ be as before.

- i. If (F, ω) has a disintegration, then F is ω -a.e. deterministic (see paper for definition).
- ii. If (F, ω) has a disintegration G, then G is a Bayesian inverse of (F, ω) .
- iii. If F is deterministic and (F, ω) has a Bayesian inverse G, then G is a disintegration of (F, ω) .

All this and much more can be found in the following references.

- K. Cho and B. Jacobs "Disintegration and Bayesian Inversion via String Diagrams" 1709.00322 [cs.Al]
- T. Fritz "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics" 1908.07021 [math.ST]
- A. Parzygnat and B. Russo "Non-commutative disintegrations: existence and uniqueness in finite dimensions" 1907.09689 [quant-ph]
- A. Parzygnat "Inverses, disintegrations, and Bayesian inversion in quantum Markov categories" 2001.08375 [quant-ph]
- A. Parzygnat and B. Russo "A non-commutative Bayes' theorem" 2005.03886 [quant-ph]
- A. Parzygnat "Categorical probability theory" videos available at https://www.youtube.com/playlist?list= PLSx1kJDjrLRSKKHj4zetTZ45pVnGCRN80

Thank you!

• • • • • • • • • • • • • •

Arthur J. Parzygnat (IHÉS, France) Categorical probability in the quantum realm 2020 J

イロト イヨト イヨト イヨト