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The following lectures are largely based on Brian C. Hall’s book Quantum Theory

for Mathematicians published by Springer [6]. In fact, much of the presentation

follows that book and in many parts, statements are simply copied. The reader is

urged to look up the details in that text, which is quite well-written. These lectures

are also based off my learning as a physicist and the physicists who have taught

me. Additional references are given in the body whenever used. My aim is not to

prove many theorems. It is merely to state facts that I find interesting and useful

for my understanding of physics. These are basically my personal notes that I’m

just making available to others.
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1. First lecture: history and axioms of quantum mechanics

Since the first lecture will be largely historical, there will be almost no rigor.

The following is mostly a story.

1.1. Some comments on physics. Our experience has lead us to discover clas-

sical physics, a field of physics by and large agreeing with our intuitions of logic.

This logic stems from our experience as macroscopic beings living on Earth and

interacting with other macroscopic beings. Our macroscopic sizes (with respect to

atomic scales) allow us senses that give us the ability to detect distance, weight,

time and so on in a way sufficient for our survival. These scales fall into a certain

range, one which is experienced by macroscopic organisms like ourselves. For ex-

ample, our heartbeat gives us an idea of time on a small scale while the sun gives

us an idea of time on a large scale. Classical mechanics is based off of these senses.

Our concept of Galilean and Newtonian relativity, gravity on earth and beyond,

and electromagnetism are the common cases where our senses allowed us to ex-

tract physical laws that predict certain phenomena which can be experimentally

confirmed. I’m not saying these realizations are unimportant—they are incredibly

important in that they seem to dictate some order in our universe, an order which

is comprehendible by us via logic and mathematics.

However, because classical physics is based off our senses and notions of logic, we

should be careful to extrapolate these laws to scales beyond our typical senses. We

should be careful about microscopic objects, smaller time scales, lighter masses, and

smaller distances. Dually, we should also be careful about assuming our classical

laws hold for larger scales. Quantum physics is one formulation of physical law

that allows us to go beyond our typical scales. Again, we should only assume it

holds on some scales, and in fact it is known to not accurately describe physics on

other scales (such as high velocities). Our current belief, held by some scientists,

is that whenever we discover a physical theory, it holds on some range of scales

(provided this notion even makes sense) and any theory which claims to describe

all of physics for some range of scales should reduce to the well-known theories at

the scales included in this range for which those theories accurately describe our

universe. Whether or not a truly universal theory holds on all scales is beyond

what we understand.

1.2. Classical mechanics. For the duration of this lecture, we will be concerned

with classical mechanics restricted to flat space, i.e. Rn. I will not be mathemati-

cally precise because to do so would require an entire lecture or more.

Classical mechanics deals with structureless (and distinguishable) particles, rigid

bodies, waves, and fields. For our purposes, we will focus on the classical physics of

particles. Small particles are assumed to be represented by mathematical points in

R3 since space is “obviously” three-dimensional and R3 is the simplest such space.

Newton taught us that what determines the motion of a particle is a force and

that this force is proportional to the particle’s acceleration through the equation

F = ma, where F is the net external force, a is the acceleration, and m is the

particles mass. Another way to write this is F = dp
dt , where p is the momentum

p = mv, where v is the velocity (mass is assumed to be independent of time),

and d
dt is the derivative with respect to time, supposing that the particle travels in

time. The energy of a particle is typically given as a sum of kinetic and potential
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terms H(x, p) = p2

2m + V (x). As a function of x and p, H is called the classical

Hamiltonian. In general, the Hamiltonian is an example of a classical observable,

which in general is some function of x and p. Newton’s law can be expressed as a

set of first order partial differential equations

dx

dt
=
∂H

∂p
(1)

dp

dt
= −∂H

∂x
(2)

called Hamilton’s equations. One can check explicitly that when H is of the form

mentioned above that these equations reduce to F = ma, where F = −dVdx .However,

Hamilton’s equations hold more generally for arbitrary Hamiltonians in arbitrary

coordinates. The collection of x’s and p’s form what is called a classical phase space.

The set of functions on phase space, i.e. classical observables, actually forms a Lie

algebra with the Poisson bracket defined by

(3) {f, g} :=
∂f

∂x
· ∂g
∂p
− ∂f

∂p
· ∂g
∂x
, where f, g ∈ C∞(R3 × R3)

and where · represents the usual inner product on R3. Recall, a Lie algebra is a

vector space with a binary product { · , · } that satisfies the following properties

i) {f, g + ch} = {f, g}+ c{f, h} for all f, g, h ∈ C∞(R3 × R3) and c ∈ R
ii) {f, g} = −{g, f} for all f, g ∈ C∞(R3 × R3)

iii) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 for all f, g, h ∈ C∞(R3 ×R3) (this is

called the Jacobi identity)

iv) {f, gh} = g{f, h} + {f, g}h for all f, g, h ∈ C∞(R3 × R3) (this means that

{ · , · } is a derivation over the product of functions)

Technically, this last property holds only if the vector space is in also an associative

algebra. Therefore, conditions (1)-(3) specify what a Lie algebra is.

One of the important properties of quantum mechanics will be related to the

Poisson bracket. It is therefore important to stress special examples of functions.

The six projection maps R6 → R are (abusively) written as xi and pi with i = 1, 2, 3.

These functions satisfy the canonical Poisson bracket relations

{xi, xj} = 0(4)

{pi, pj} = 0(5)

{xi, pj} = δij(6)

for all i, j = 1, 2, 3.

And yet another important reason for introducing Poisson bracket is the following

fact. If (x(t), p(t)) is a solution to Hamilton’s equations and f is any function on

phase space then along the trajectory of the solution

(7)
d

dt
f(x(t), p(t)) = {f,H}(x(t), p(t))

which is more commonly written as

(8)
df

dt
= {f,H}.

This approach is more useful for classical mechanics on arbitrary manifolds since

it gives a coordinate independent way to describe time evolution. Notice that in

particular, one obtains Hamilton’s equations from this equation.
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1.3. Problems with classical physics. One of the major problems with classical

physics and its predictions came from the “ultraviolet catastrophe” in the context of

blackbody radiation. A blackbody is a perfect absorber of electromagnetic radiation

(light). If electromagnetic radiation is pumped into a blackbody cavity, the energy

fluctuates the atoms of the cavity and causes infrared radiation to be emitted until

there is thermal equilibrium, which occurs when absorption balances the emission.

This occurs for all frequencies of electromagnetic radiation. In thermal equilibrium

at temperature T , the average kinetic energy per molecule is given by kT
2 , where

k is Boltzman’s constant (k = 1.38 × 10−23 Joules per Kelvin). This is called the

equipartition theorem. In our case, what takes place of the molecule is a standing

electromagnetic wave in the cavity. The total energy in this case is twice the kinetic

energy (this is a common fact of systems executing simple harmonic motion as a

wave does). Thus, the energy is kT and this is independent of the frequency of

radiation. The energy density per unit frequency is given by the Rayleigh-Jeans

formula

(9) ρT (ν) =
8πν2kT

c3
,

where ν is the frequency. For low frequency, this matches experimental results.

However, for high frequencies, the formula is quadratic and diverges. This is in

sharp contrast to experiment which showed that there is actually a decay for high

frequencies.

In 1900, Planck realized that classical laws did not accurately account for certain

properties of radiant heat. He was forced to assume that the energy is not indef-

initely divisible but instead must come in discrete units instead of a continuous

flow. Although Planck did not introduce this “quantization” for the problem of

blackbody radiation [9], it’s application is a simple consequence. By assuming that

the energy of the standing electromagnetic waves in the cavity were quantized, one

arrives at the Planck formula

(10) ρT (ν) =
8πν2kT

c3
hv

e
hν
kT − 1

,

where h is Planck’s constant

(11) h = 6.63× 10−34 Joules times seconds.

This formula agrees with experiment. For more details, one can look at [3].

In 1905, Einstein wrote a paper on the photoelectric effect. The photoelectric

effect occurs when electromagnetic radiation strikes a metal causing electrons to

be emitted. Specifically, what is observed is that increasing the intensity does not

increase the energy of the emitted electron (as one would guess from the classical

theory), but only increases the number of electrons emitted. Einstein’s solution to

this problem was to assume that light consists of individual particles which transfer

their energy to individual electrons. If light is thought of as a particle, called

a photon, then one imagines increasing the intensity of light as corresponding to

increasing the number of photons as opposed to increasing their frequency (energy).

In 1888, Rydberg tried to explain why when electricity is passed through hydro-

gen gas, light of very specific frequency is emitted. The energy from the electricity

was transferred to the electrons and the electrons emit light of a certain discrete

frequency as opposed to a continuous range of frequencies. This frequency is related
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to the energy emitted by the electron. Rydberg postulated that the form of this

energy is

(12) En = − R
n2
, where n ∈ Z+

and where R is Rydberg’s constant, which turns out to be given by

(13) R =
2π2meQ

4

h2
,

where Q is the charge of the electron and me is the mass of the electron. The

frequencies of light emitted are of the form

(14) ω =
2π

h
(En − Em)

for some n > m.

In 1913, Niels Bohr looked at the spectrum of hydrogen and tried to explain

it “semi-classically” by picturing an electron orbiting the nucleus but postulating

that the angular momentum of the electron was quantized. This forced the radius

of the orbit to be given discretely by

(15) rn =
n2h2

4π2meQ2

The energy associated to such motion at these fixed radii exactly gave Rydberg’s

formula for the energy spectrum of hydrogen. In 1924, Louis de Broglie realized

that if the electron is described as a wave with its wavelength λ related to its

momentum p by

(16) p =
h

2πλ

then such a wave would require discrete radii. This is because any given orbit

consist of an integral number of periods of that wave. The major result of de

Broglie’s work was that what we thought of as certain objects having particle-like

properties is misconstrued and in fact there are certain wave-like aspects to these

objects as well.

The point of this brief history is to illustrate that quantum theory, as it is

currently formulated, was certainly not obvious. It took many years of work. There

were several other experiments done which I have not mentioned.

1.4. Postulates of quantum mechanics. Although the previous discussion will

not immediately seem related to the following postulates of quantum mechanics,

the relationship will hopefully be made slightly more clearer in the next section.

It took over 25 years to finalize these postulates, so it should not be obvious at

all that they work. The surprising thing, in fact, is that they do work to excel-

lent accuracy. What’s more surprising is that the language used to describe it is

inherently mathematical.

Heisenberg put forth his ideas on matrix mechanics in 1925 (at approximately

the age of 24!). These ideas stemmed largely from the quantization aspects such as

spectral lines emitted from molecules such as hydrogen. We already saw that the

frequencies of light emitted from hydrogen are of the form ω = 1
~ (En−Em). In fact,

all frequencies in a spectrum can be expressed by quantities νnm = Tn − Tm where

n,m ∈ N. This fact was discovered by Ritz. Bohr used Planck’s law to identify these

Tn terms with energy via En = hTn. Manipulations of these quantities were worked
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out by Heisenberg and their relation to matrix calculus, already known at the time,

was described by Born and Jordan. In some sense, Heisenberg discovered matrix

calculus via physics. Born was the one who realized the canonical commutation

relation

(17) px− xp =
h

2πi

between position x and momentum p.

Almost simultaneously, Dirac also described such manipulations and introduce

the concept of a q-number (q for quantum), which basically corresponds to matrices.

He did this also in 1925 (at approximately the age of 23!). Dirac later described the

relationship between Poisson bracket of classical mechanics and the commutator of

operators in quantum mechanics.

Schrödinger developed his ideas based on the concept of wave-particle duality

in 1926, a few months after Heisenberg and Dirac but independently. In it, he

introduced the concept of a wavefunction along with an ordinary differential equa-

tion which determines the future of this wavefunction. This differential equation is

currently known as the Schrödinger equation and his theory at the time was called

wave mechanics. Although the wavefunction is not a physically observable quantity,

it is useful in describing observables. In fact, it was Schrödinger who declared the

correspondence between linear operators and physical observables. Schrödinger was

also responsible for showing that his wave mechanics is equivalent to Heisenberg’s

(and Dirac’s) matrix mechanics.

The wavefunction gives the feeling that the notions of particles and waves are

sort of blurred. On the one hand, the wavefunction occasionally has the form of

an oscillatory function on space and on the other hand, it has a particle aspect

to it coming from an interpretation of the wavefunction. This interpretation was

supplied by Born. In the cases first studied, the wavefunction was a function

on space, written as ψ(x). Its interpretation was that the quantity |ψ(x)|2 is the

probability density of a particle to be located at the point x. In general, ψ could

be a function of position, momentum, or energy. In that case, the probability is

similarly described in terms of the modulus squared of ψ.

All this development lead to the following postulates. As a first run, we will

be slightly imprecise, work through some examples to get a better feel for the

physics, make precise certain mathematical nuances typically ignored by the physics

community, and then come back to make more precise statements. This alone will

take some time. Before the mathematician gets annoyed, let me make a personal

remark. When a mathematician has a vague notion of what they want to do, but

a precise statement or goal is not yet realized, and all the mathematician has is

a bunch of examples and computations, then one must work a bit to achieve the

statement of a theorem or something. And in the process of proving such a theorem,

if the initial hypotheses were not enough, or too strong, then they are modified to

give a better and more precise statement. This will be the approach taken here.

Such an approach is probably more frustrating, but also more historical. Plus, it

is the way physicists are taught. Anyway, we’ll discuss the postulates and make

remarks as we go on.
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Postulate 1.1. The physical states of a quantum system are in one to one cor-

respondence with elements ψ in PH, where H is a complex separable Hilbert space

and PH is its projective space.

In practice, one works with representative elements in the Hilbert space, instead

of the projective space, so that the techniques of linear algebra and functional

analysis can be used. The Hilbert space depends on the system one is describing.

A physicist will not always say what Hilbert space they work with explicitly. Instead

they will supply a set of commutation relations. These specify an algebra, and the

Hilbert space is understood to be an irreducible representation of this algebra but a

particular representation is not always chosen. Depending on the algebra, there are

classification results that give unique (up to unitary equivalence) representations.

We will discuss these in detail later.

At first, one might object to such an abstract definition of a state. To those

thoughts, let me emphasize that a state, perhaps naively, should be described by

some collection of numbers. Indeed, we will see that a state is completely described

by precisely a collection of several types of numbers. These numbers turn out to

correspond to vectors in Hilbert spaces (they correspond to eigenvalues of certain

self-adjoint operators) and they uniquely specify a state in the Hilbert space (up

to multiplication by a nonzero multiple of C). In the following lecture, we will go

over several important examples that illustrate this clearly.

Postulate 1.2. To each real-valued function f on the classical phase space, there

is a corresponding self-adjoint operator f̂ on the quantum Hilbert space. f̂ is called

a quantum observable.

Before we define adjoints, let me make two remarks.

First, as it stands, this statement is somewhat vacuous. One would like the

operator f̂ to satisfy some sort of property. For certain functions f and g on the

classical phase space, f̂ and ĝ satisfy

(18) {̂f, g} = −2πi

h
[f̂ , ĝ].

There is no unique way to do this in general for all classical observables (this

is known as the quantization ambiguity or also the Groene-van Hove Theorem).

However, there is a unique way (up to unitary equivalence) to turn some classical

observables into quantum operators, and in practice this is what one cares about

in many situations. We will explore the general case in much detail when we talk

about the actual process of quantization more precisely.

Second, the operator f̂ might not be defined on the entire Hilbert space. This

is more of a technical issue. We will talk a lot more about this in a future lecture

(and in the examples in the next section).

To make sense of this postulate, we should review adjoints and Riesz’ theorem.

Let H be a complex Hilbert space. Denote the inner product by 〈 · , · 〉. Let

A be a bounded operator on H (this means there exists a positive number C such

that ‖Aψ‖ ≤ C‖ψ‖ for all ψ ∈ H). Then the adjoint A† of A is a bounded operator

on H such that

(19) 〈φ,Aψ〉 = 〈A†φ, ψ〉 for all φ, ψ ∈ H.

Its existence follows from Riesz’ theorem which states the following.
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Theorem 1.3. Using the same notation as in the previous paragraph, if ξ : H → C
is a bounded linear functional, then there exists a unique φξ ∈ H such that

(20) ξ(ψ) = 〈φξ, ψ〉 for all ψ ∈ H.

The reason the existence of A† follows from this is because

(21) ξ : ψ 7→ 〈φ,Aψ〉

is a bounded linear functional for any fixed φ ∈ H. Thus we define A†φ := φξ.

With this, a bounded operator A is said to be self-adjoint if A† = A. A more

technical description is needed for unbounded operators, which we will address

later.

Postulate 1.4. The expectation value of measuring an observable f̂ in the quantum

state ψ is given by 〈f̂〉ψ := 〈ψ, f̂ψ〉.

This postulate stresses that one does not get a precise measurement for an observ-

able in general. Instead, what one gets is merely an expectation value. To illustrate

what’s happening, suppose that A is a self-adjoint operator with an orthonormal

basis of eigenvectors (we will address the issue of the existence of eigenvectors in

another lecture—this is a vert interesting question by the way where spectral theory

and bundles are involved) denoted by {en}n∈N or n∈ZN . Denote the corresponding

eigenvalues by λn. Then any state ψ can be written uniquely as

(22) ψ =
∑
n

cnen, where cn ∈ C

Since ψ should be normalized to unity by the first postulate, we must have
∑
n |cn|2 =

1. Then the expectation value of the observable A for the state ψ is given by1

(23) 〈ψ,Aψ〉 =

〈∑
n

c∗nen,
∑
m

λmcmem

〉
=
∑
n,m

c∗nλmcm〈en, em〉 =
∑
n

λn|cn|2.

What this means physically is that the probability of measuring the eigenvalue λn
of the observable A for the state ψ is precisely |cn|2.

One does not always have eigenvectors for a given self-adjoint operator (for the

physicist: the Dirac delta function is not an element in the Hilbert space). However,

there is a notion of a generalized eigenspace and one obtains a probability measure

on the spectrum of an operator describing the probability of a given measurement

of a state ψ. This requires several definitions and the spectral theorem to describe

fully and this will be done in a later lecture.

Postulate 1.5. Let f̂ be a quantum observable and let ψ be a quantum state. If

upon measuring the observable f̂ in the state ψ one obtains the eigenvalue λ, then

a subsequent measurement made immediately afterwards will yield λ again.

This is commonly referred to as the collapse of the wave function. It suggests

that the observer has an irreversible effect on the state by act of measurement.

Note that this is not at all the case in classical physics, which is deterministic and

is described independent of an observer. In some sense, this brings up the question

as to what exactly is measurement. I’d say this issue is still not completely clear

at present.

1It is physics convention to conjugate the vector on the left in the inner product.
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Postulate 1.6. Let H denote the classical Hamiltonian operator for the classical

system. The time evolution of a quantum state ψ is given by the Schrödinger

equation

(24)
dψ

dt
= −2πi

h
Ĥψ.

Postulate 1.3 says that all we can really obtain from a state is its expectation

value. On the other hand, this postulate tells us that some information is completely

deterministic. But remember, ψ is not an observable. The above postulate is also

known as the Schrödinger representation. One can also formulate it in terms of

operators by leaving elements in the Hilbert space fixed but considering the time

evolution to take place for the operators. In this case, the time evolution is described

by the Heisenberg equation of motion

(25)
df̂

dt
=

2πi

h
[Ĥ, f̂ ].

A personal comment is in order here since I cannot resist it. There is currently

no agreed upon consensus how important classical physics is in the description of

quantum mechanics. It seems that a classical theory is necessary in order to make

sense of the quantum theory. It is my belief that there should exist a framework of

quantum mechanics that makes no reference to classical mechanics. Furthermore,

an understanding of this framework might be well-suited for a theory of quantum

gravity [1]. Such a theory perhaps should have a prescription for how, in a certain

range of parameters, give rise to classical physics. My speculation is that both

classical physics and quantum physics are manifestations of some more general

structure.

1.5. Position and momentum. The basic classical observables are position, mo-

mentum, and energy. Technically, in the end, position is really the most direct

observable since we read dials, observe effects, and so on which take place at certain

positions. Therefore, we will now supply the main Hilbert space which motivated

quantum mechanics.

The Hilbert space associated to a classical particle of mass m moving in R1 is

L2(R). The position operator X̂ is defined by

(26) (X̂ψ)(x) = xψ(x)

and the momentum operator P is defined by

(27) (P̂ψ)(x) =
h

2πi

dψ(x)

dx
.

One can easily check the commutation relation

(28) P̂ X̂ − X̂P̂ =
h

2πi
idH.

Note that these equalities technically make sense only on their domain of definitions,

but we will ignore this issue for now. X̂ and P̂ are examples of unbounded operators,

something we will precisely define later. Clearly, there are nontrivial domains for

all of these operators, so we should be satisfied by using the terminology “nice” to

describe vectors where all of the statements we make hold. In fact, we have

(29) 〈φ, X̂ψ〉 = 〈X̂φ, ψ〉
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and

(30) 〈φ, P̂ψ〉 = 〈P̂ φ, ψ〉

for nice φ, ψ ∈ H.
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2. Second lecture: the spectral theorem for bounded operators

As before, in the following, let H denote a complex separable Hilbert space. In

the first lecture, we mentioned the importance of self-adjoint operators in quantum

theory. Self-adjoint operators on H represent physical observables. We must set

up some terminology that will be useful, namely bounded operators and adjoints.

Then we can discuss self-adjoint operators along with several examples. From the

examples, we motivate the definition of the spectrum of a self-adjoint operator and

discuss its properties, most notably the spectral theorem.

2.1. Bounded operators, examples, and adjoints.

Definition 2.1. A bounded operator from one Hilbert space H to another H′ is a

linear operator L : H → H′ such that

(31) sup
ψ∈H\{0}

{
‖Lψ‖
‖ψ‖

}
<∞.

If L is bounded, then

(32) ‖L‖ := sup
ψ∈H\{0}

{
‖Lψ‖
‖ψ‖

}
is called the norm of the operator L.

Remark 2.2. Equivalently, the norm of L can be defined as

(33) ‖L‖ = sup
ψ∈H,‖ψ‖=1

{‖Lψ‖}

Example 2.3. By the previous remark, in the case where H = H′ are finite-

dimensional vector spaces, one can see that the norm of an operator coincides with

the magnitude of the maximal eigenvalue of L. Thus, all linear operators between

finite-dimensional Hilbert spaces are bounded.

Example 2.4. Let H = L2([0, 1]). Recall that the position operator X̂ is defined by

(34) (X̂ψ)(x) := xψ(x), for all ψ ∈ L2([0, 1]) and x ∈ [0, 1].

X̂ is bounded because

(35) ‖X̂ψ‖2 =

∫ 1

0

x2|ψ(x)|2 ≤
∫ 1

0

|ψ(x)|2 = 1

for ψ ∈ L2([0, 1]) with ‖ψ‖ = 1.

Definition 2.5. Let A : H → H′ be a bounded operator. A left adjoint to A is a

bounded operator AL : H′ → H such that

(36) 〈ALφ, ψ〉 = 〈φ,Aψ〉′

for all φ ∈ H′ and ψ ∈ H. A right adjoint to A is a bounded operator AR : H′ → H
such that

(37) 〈ψ,ARφ〉 = 〈Aψ, φ〉′

for all φ ∈ H′ and ψ ∈ H.
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Because the inner product for a Hilbert space is conjugate symmetric, a left

adjoint is a right adjoint and vice versa. Therefore, we simply call a left (and

therefore right) adjoint of A as an adjoint of A, and we denote it by A†. We will

discuss the existence and uniqueness of an adjoint in a moment, but first a simple

example.

Example 2.6. Let H = Cn with the standard inner product. Then a linear operator

A : Cn → Cn can be written as a matrix with components Aij . The adjoint A† of A

is given by the matrix with components A∗ji where ∗ denotes the complex conjugate.

In this case, the adjoint exists and is unique.

It is not an obvious statement, but adjoints to certain operators exist and are

unique.

Theorem 2.7. Let A : H → H be a bounded operator. Then A† exists and is

unique.

We need an important Lemma, which we will not prove, for this theorem.

Theorem 2.8 (Riesz). Let ξ : H → C be a bounded operator. Then there exists a

unique φξ ∈ H such that

(38) ξ(ψ) = 〈φξ, ψ〉 for all ψ ∈ H.

We now prove the existence and uniqueness of adjoints.

Proof. Let φ ∈ H. Define ξ : H → C by

(39) ξ : ψ 7→ 〈φ,Aψ〉.

This map is linear since A is linear and 〈 · , · 〉 is linear in the right coordinate. ξ

is bounded because for all ψ ∈ H with ‖ψ‖ = 1, we have

(40) |〈φ,Aψ〉| ≤ ‖φ‖‖A‖‖ψ‖ = ‖φ‖‖A‖ <∞.

By Riesz’ theorem, there exists a unique φξ ∈ H such that

(41) ξ(ψ) = 〈φξ, ψ〉 for all ψ ∈ H.

We define A† by

(42) A†φ := φξ.

To show that A† is linear, consider fixed φ1, φ2 ∈ H and λ ∈ C along with the

following listen of equalities where we use the existence and uniqueness result just

proved several times

〈A†(φ1 + λφ2), ψ〉 = 〈φ1 + λφ2, Aψ〉(43)

= 〈φ1, Aψ〉+ λ∗〈φ2, Aψ〉(44)

= 〈A†φ1, ψ〉+ λ∗〈A†φ2, ψ〉(45)

= 〈A†φ1, ψ〉+ 〈λA†φ2, ψ〉(46)

= 〈A†φ1 + λA†φ2, ψ〉(47)

for all ψ. Finally by uniqueness of the adjoint

(48) A†(φ1 + λφ2) = A†φ1 + λA†φ2.

[Show A† is a bounded] �
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Definition 2.9. A bounded operator A : H → H is said to be self-adjoint if A† = A.

Example 2.10. The position operator X̂ on L2([0, 1]) defined earlier is self-adjoint.

This is because

(49) 〈φ, X̂ψ〉 =

∫ 1

0

φ(x)∗xψ(x)dx =

∫ 1

0

(xφ(x))∗ψ(x)dx = 〈X̂φ, ψ〉

for all ψ, φ ∈ L2([0, 1]).

2.2. Eigenvalues versus the spectrum. Notice that in the previous example,

the position operator does not have any eigenvectors! This should sound strange at

first because in finite dimensions, we have the well-known result that any self-adjoint

operator A on an n-dimensional Hilbert space has n eigenvectors with corresponding

eigenvalues being real. This statement happens to be false in infinite dimensions.

The physicist might be confused if they just listen to what their professors tell

them. They might object and say that an eigenvector ψ to the equation

(50) (X̂ψ)(x) = λψ(x)

for a real number λ ∈ [0, 1] is the “function” ψ(x) = δ(x−λ) called the Dirac delta

function concentrated at λ. There’s nothing wrong with defining a measurable func-

tion to be zero almost everywhere and infinity at some points. However, that’s not

what the Dirac delta function is. Furthermore, it is not square-integrable. We will

discuss the issue of eigenvectors more when we talk about direct integrals, but for

now we illustrate an important point regarding the non-existence of eigenvalues

first. Although there are no eigenvalues for the position operator, there is some-

thing called a spectrum. The spectrum of a self-adjoint operator, i.e. observable,

corresponds to the values one can obtain upon measuring the observable in a partic-

ular state. Furthermore, we’d like to be able to associate probabilities of measuring

such values in a particular range. The spectral theorem will let us do this.

Definition 2.11. Let A : H → H be a linear operator. The spectrum of A, denoted

by σ(A), is the set of all λ ∈ C such that the operator A−λI does not have a bounded

linear inverse.

Why is this a good definition? We would like eigenvalues corresponding to non-

zero eigenvectors of an operator to be in the spectrum, and clearly they are because

if λ is an eigenvalue of A with corresponding eigenvector ψ, then A − λI cannot

be invertible because (A− λI)ψ = Aψ − λψ = λψ − λψ = 0 so that A− λI is not

injective so it cannot be invertible. We now list several important properties for

the spectrum of bounded linear operators as well as for self-adjoint operators.

Theorem 2.12. Let A : H → H be a bounded operator.

i) Then the spectrum σ(A) is a closed, bounded, and non-empty subspace of C.
ii) If A is self-adjoint, then σ(A) ⊂ R ⊂ C.

iii) If A is self-adjoint, then λ ∈ R is in σ(A) if and only if there exists a sequence

ψn of nonzero vectors in H such that

(51) lim
n→∞

‖Aψn − λψn‖
‖ψn‖

= 0

The second statement is the analogue of the statement that self-adjoint operators

in finite-dimensional Hilbert spaces have real eigenvalues. The third statement gives

the feeling that for elements in the spectrum, there is a sequence of vectors that seem
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to go towards the eigenvector, were one to exist. Since Hilbert spaces are complete,

one can immediately check that the sequence {ψn}n∈N cannot be a Cauchy sequence

unless λ is actually an eigenvector. As an example, one can consider a sequence of

Gaussian functions concentrated at a fixed λ with decreasing width and increasing

height for the position operator X̂ on L2([0, 1]) defined in earlier examples. The

limit is a distribution, the Dirac delta function, and is not in L2([0, 1]). This is a

great segue to the following example.

Example 2.13. Let X̂ be the position operator on L2([0, 1]). Then σ(X̂) = [0, 1].

Proof. See Hall Example 7.9. �

2.3. Measurements and the spectral theorem. Now that we have the values

that an observable, say A, can take, we want to associate to every “nice” subset

E ⊂ σ(A) a probability that a state will be found in such a range and we’d also

like to find the subspace VE in H corresponding to the states whose spectrum lies

in the range E. Furthermore, by another postulate of quantum mechanics, we want

the associated projection operator PE since after a measurement in the range E,

the state will necessarily be projected into the subspace VE . First we discuss what

“nice” means for subsets E ⊂ σ(A). In order to do this rigorously, we need to

introduce basic concepts from measure theory, which I expect is just a review. For

those unfamiliar, measure theory gives us a rigorous way to express what we mean

by length, area, volume, and so on. Furthermore, it gives us a way of doing analysis

in more general settings.

Definition 2.14. A measurable space is a set Y equipped with a collection Σ, called

a sigma-algebra, of subsets of Y satisfying the following properties.

i) Y ∈ Σ.

ii) Let C be any countable set. Then for any E : C → Σ the union ∪c∈CE(c) ∈ Σ.

iii) If E ∈ Σ then Ec ∈ Σ, where Ec := {y ∈ Y | y /∈ E} is the complement of E.

Example 2.15. Let (Y, τ) be a topological space. The sigma-algebra generated by τ

(the smallest sigma algebra containing τ) is called the Borel algebra and is denoted

by B(τ). An element E ∈ B(τ) is called a Borel set.

Definition 2.16. Let (Y,Σ) and (Z,Ω) be two measure spaces. A function f :

Y → Z is said to be measurable if f∗(E) ∈ Σ for all E ∈ Ω. Here f∗ denotes the

pullback of sets, namely f∗(E) = {y ∈ Y | f(y) ∈ E}.

Example 2.17. Let Y and Z be topological spaces and f : Y → Z a continuous

map. Then f is Borel measurable. The converse need not be true, namely not every

Borel measurable function is continuous.

Definition 2.18. Let (Y,Σ) be a measurable space. A positive measure on (Y,Σ)

is a function µ : Σ→ [0,∞] satisfying the following properties

i) µ(E) ≥ 0 for all E ∈ Σ.

ii) µ(∅) = 0.

iii) Let C be a countable set. If E : C → Σ satisfies E(c)∩E(c′) = ∅ for any pair

of two different c, c′ ∈ C then

(52) µ

(⋃
c∈C

E(c) ∈ Σ

)
=
∑
c∈C

µ(E(c)).
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A measure tells us precisely how to assign volumes to measurable regions. What

we want for quantum mechanics is a probability measure on σ(A).

Definition 2.19. Let (Y,Σ) be a measurable space. A probability measure on

(Y,Σ) is a measure µ : Σ→ [0,∞] with µ(Y ) = 1.

In fact, we want something more in quantum mechanics. When we make a

measurement, we project the original state onto a subspace. Depending on the

measurement, the projection might be onto an eigenvector, but more general situ-

ations can occur as we’ve already mentioned for the position operator. If we make

a measurement of an observable A in the range E ⊂ σ(A), we want to not only

associate a probability to such a range but also a projection operator PE onto a

closed subspace VE ⊂ H. To make sense of the equivalence between closed subspace

of H and projection operators, we state but do not prove the following theorem.

Theorem 2.20. There is a one-to-one correspondence between closed subspace

V ⊂ H and self-adjoint bounded operators P such that P 2 = P. More precisely, for

any closed subspace V ⊂ H, there exists a unique bounded operator PV , called the

orthogonal projection onto V, such that P 2
V |V = IV and PV |V ⊥ = 0. Conversely, for

any self-adjoint bounded operator P that satisfies P 2 = P then P is an orthogonal

projection onto VP := range(P ).

Finally, we can describe projection-valued measures. But first a notation. Let

B(H) denote the set of bounded operators on H. It is a fact that if H is a Hilbert

space, then B(H) is a Banach space, and in fact a Banach algebra.

Definition 2.21. Let (Y,Σ) be a measurable space. A projection-valued measure

on (Y,Σ) is a function µ : Σ→ B(H) satisfying the following conditions.

i) µ(E) is an orthogonal projection for every E ∈ Σ.

ii) µ(∅) = 0 and µ(Y ) = I.

iii) Let C be a countable set. If E : C → Σ satisfies E(c)∩E(c′) = ∅ for any pair

of two different c, c′ ∈ C then

(53) µ

(⋃
c∈C

E(c)

)
=
∑
c∈C

µ(E(c))

meaning that for all ψ ∈ H

(54) µ

(⋃
c∈C

E(c)

)
ψ =

∑
c∈C

µ(E(c))ψ.

iv) For all E1, E2 ∈ Σ,

(55) µ(E1 ∩ E2) = µ(E1)µ(E2).

Remark 2.22. The reader might realize the similarity between a projection-valued

measure and a probability measure. In particular, notice how the measure of the

entire X is the identity operator, which has norm 1.

One of the purposes of all these definitions is that we want to associate to an ob-

servable A a measure µA on σ(A), the spectrum of A, which will tell us information

about the expectation values of the observable A and certain powers Am including

the probability of measuring A in particular ranges. But for this, we have to set up

a calculus for integrating over ranges E ⊂ σ(A). First we give an example relating

projection-valued measures to ordinary measures.
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Example 2.23. Let µ be a projection-valued measure on a measurable space (Y,Σ).

Let ψ ∈ H be any vector. Then one can define a positive measure µψ on (Y,Σ) by

setting

(56) µψ(E) := 〈ψ, µ(E)ψ〉

for all E ∈ Σ. In the special case where H = L2([0, 1]), this says

(57) µψ(E) :=

∫ 1

0

ψ(x)∗(µ(E)ψ)(x) dx

so that a projection-valued measure gives rise to integration.

This motivates the following definition and theorem which generalizes the pre-

vious example.

Theorem 2.24. Let (Y,Σ) be a measurable space with a projection-valued measure

µ. Then there exists a unique linear map

L∞(Y )

∫
Y
· dµ

−−−−−→ B(H)(58)

f 7−−−−−→
∫
Y

f dµ(59)

from the space of bounded and measurable complex-valued functions on Y into

bounded operators on H with the property that

(60)

〈
ψ,

(∫
Y

f dµ

)
ψ

〉
=

∫
Y

f dµψ

for all f : Y → C and ψ ∈ H. The integral operator satisfies several more properties

(see Hall Proposition 7.11).

Theorem 2.25 (The spectral theorem for bounded operators). For any self-adjoint

operator A : H → H there exists a unique projection-valued measure µA on the Borel

sigma algebra for σ(A) such that

(61)

∫
σ(A)

λ dµA(λ) = A.

There is a different version of the spectral theorem which we will discuss next

time which associates a more natural measure to σ(A) that does not come from the

Borel sigma algebra from R and gives a sort of decomposition of the Hilbert space

into a collection of Hilbert spaces living over the spectrum.

Theorem 2.26. For any self-adjoint operator A on H and any unit vector ψ ∈ H,
there exists a unique probability measure µAψ on σ(A) such that

(62)

∫
σ(A)

λm dµAψ (λ) = 〈ψ,Amψ〉

for all m ∈ N.
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3. Third lecture: a geometric version of the spectral theorem for

bounded operators

Today we will discuss another version of the spectral theorem that will enable

us to describe self-adjoint bounded operators in terms of multiplication operators

and give a meaning to the notion of distributions as being eigenvectors of certain

multiplication operators but these eigenvectors will live in another Hilbert space.

To do this, we will need to discuss families of Hilbert spaces that live over the

spectrum of a bounded operator in terms of what are called direct integrals. We

will recall some definitions to make this as self-contained as possible. As usual let

H denote a complex separable Hilbert space.

3.1. Position, momentum, and the Fourier transform.

Definition 3.1. Let H = L2(Y, µ) be the space of square-integrable measurable

functions on a measure space (Y, µ). Let h be a bounded measurable real-valued

function on X. Let Mh be the operator defined by

(63) Mhψ := hψ

for all ψ ∈ L2(Y, µ). Mh is called a multiplication operator on L2(Y, µ).

Example 3.2. Recall the case L2([0, 1]) which is the Hilbert space describing the

possible states of a particle living on the interval [0, 1]. We considered the position

operator X̂ which was defined by

(64) (X̂ψ)(x) := xψ(x)

for all x ∈ [0, 1] and all ψ ∈ L2(R). This is an example of a multiplication operator

where the function associated to this operator is actually the identity.

Sometimes non-examples help as well.

Example 3.3. Consider again the case L2([0, 1]) but with the momentum operator

P̂ defined by

(65) (P̂ψ)(x) :=
h

2πi

d

dx
ψ(x)

which poses a few issues because for one it is not actually defined on all of L2([0, 1])

but only a dense subspace. P̂ is an example, in this case, of what’s called an un-

bounded operator. We will discuss unbounded operators in the next lecture. Physi-

cally, this operator describes the momentum of a particle living on [0, 1]. Regardless,

we can still consider it and note that it is clearly not a multiplication operator.

The two examples above are related, although we will have to wait to give a

precise formulation where we state the spectral theorem for unbounded operators.

However, we can still give a flavor of what to expect in this general case. The

second version of the spectral theorem that we will discuss says that any bounded

self-adjoint operator on H is unitarily equivalent to a multiplication operator on a

direct integral. Briefly, the direct integral in this version of the spectral theorem

is the collection of all assignments of elements in a family of Hilbert spaces living

over a measure space, which sometimes is actually the spectrum of that self-adjoint

operator. The result will be that the position and momentum operators are pre-

cisely related by the spectral theorem in this way. If we ignore the technicality of
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the direct integral and allow ourselves to think that Dirac delta distributions are

elements of our Hilbert space then the spectral theorem says the following.

Recall that the Fourier transform operator F is defined on (a subset of) L2(R)

by the following formula

(66) (Fψ)(p) :=
1√
h

∫ ∞
−∞

e−2πipx/hψ(x)dx

In Michael’s talk [7], we discussed under what conditions does this formula make

sense and produces a nice result. Since we’re being vague, we will say that this

works for “nice” ψ. Anyway, we find the following fact

(67) (F(P̂ψ))(p) = p(Fψ)(p)

by simply applying integration by parts. Thus, we’ve turned the derivative operator

described by P̂ into a multiplication operator. We will discuss this more generally

later, and in this lecture specifically for bounded operators.

3.2. Direct integrals. But to do so, we have to introduce a notion that not only

has importance in describing another version of the spectral theorem, but also has

significant importance in a generalization of the Peter-Weyl theorem for locally

compact Lie groups. This is the concept of the direct integral.

Definition 3.4. Let (Y,Σ, µ) be a measure space. A Hilbert family over Y consists

of a complex separable Hilbert space Hλ with associated inner product 〈 · , · 〉λ for

every λ ∈ Y. There is a natural function π :
⋃
λ∈Y Hλ → Y called the projection of

the Hilbert family.

Definition 3.5. A section of a Hilbert family π :
⋃
λ∈Y Hλ → Y is a function s :

Y →
⋃
λ∈Y Hλ such that π◦s = idY . Denote the set of sections of π :

⋃
λ∈Y Hλ → Y

by Γ(π).

The goal now is to define an inner product on the set of sections. Given two

sections s, t ∈ Γ(π), one candidate for the inner product would be

(68) 〈s, t〉 =

∫
Y

〈s(λ), t(λ)〉λdµ(λ).

The only problem is that the function

Y →
⋃
λ∈Y

Hλ(69)

λ 7→ 〈s(λ), t(λ)〉λ(70)

must be measurable for all sections s and t. Otherwise, one could not take the

integral of such a function with respect to the measure µ. The problem is then

to define the notion of measurability for sections so that for any two measurable

sections s and t, the above function will be measurable. There are several ways

to implement this condition. One way is to demand the existence of a countable

family of sections {ej}j∈J such that

(71) 〈ej(λ), ek(λ)〉λ =

{
0 if j 6= k

1 or 0 if j = k

and

(72) span({ej(λ)}j∈J) = Hλ
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for all λ. With this, one can make the following definition of measurability of sec-

tions.

Definition 3.6. Let π :
⋃
λ∈Y Hλ → Y be a Hilbert family over a measure space

(Y,Σ, µ) and let {ej}j∈J be a countable family of sections satisfying the above con-

ditions. Then a section s : Y →
⋃
λ∈Y Hλ is measurable if the function

(73) λ 7→ 〈ej(λ), s(λ)〉λ
is measurable for all j ∈ J. The collection {ej}j∈J is called a measurability structure

on the Hilbert family π :
⋃
λ∈Y Hλ → Y. The set of all measurable sections of π will

be denoted by Γµ(π).

Lemma 3.7. Let {ej}j∈J be a measurability structure on the Hilbert family π :⋃
λ∈Y Hλ → Y and let s and t be two measurable sections. Then the function

(74) λ 7→ 〈s(λ), t(λ)〉λ
is measurable.

Proof. �

Example 3.8. Let H be a complex separable Hilbert space. Then π : Y ×H → Y

is a Hilbert family. It is called a trivial Hilbert family with fiber H. A measura-

bility structure clearly exists in this case. This is because there exists a countable

orthonormal basis {ej}j∈J for H by the separability condition on H. Furthermore,

there is a bijection Γµ(π) ∼= Meas(X,H), where the latter set is the set of measurable

functions from X to H. Here H is equipped with the Borel measure.

Remark 3.9. The importance of Hilbert families is that they generalize the previous

example to more interesting situations where one considers functions that are only

locally defined and take values in possibly different Hilbert spaces. The notion of

locally defined objects in physics is crucial for understanding physics at a global

scale. For instance, the Dirac monopole serves as a wonderful example of where

the notion of a section is crucial to the understanding of what a wave function

is. A grand scale version of this was put forward by Dan Freed and Constantin

Teleman [4], who basically say that fields in physics are stacks (a generalization of

the notion of a presheaf, which in turn generalizes vector families).

Lemma 3.10. Let {ej}j∈J and {e′j′}j′∈J′ be two measurability structures on the

Hilbert family π :
⋃
λ∈Y Hλ → Y. Then a section s is measurable with respect to

{ej}j∈J if and only if it is measurable with respect to {e′j′}j′∈J′ .

Proof. �

Definition 3.11. Let (Y,Σ, µ) be a measure space. Let π :
⋃
λ∈Y Hλ → Y be a

Hilbert family. The set of equivalence classes of almost everywhere equal square-

integrable sections, namely s ∈ Γµ(π) such that

(75) ‖s‖ :=
√
〈s, s〉 =

(∫
Y

〈s(λ), s(λ)〉λdµ(λ)

)1/2

<∞,

is denoted by L2
µ(π).

The following is the crucial definition of this lecture and is also a theorem, which

we will prove.
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Lemma 3.12. With (Y,Σ, µ) and π :
⋃
λ∈Y Hλ → Y as above, the assignment

(76) (s, t) 7→ 〈s, t〉 =

∫
Y

〈s(λ), t(λ)〉λdµ(λ)

defines an inner product on L2
µ(π) and therefore gives L2

µ(π) the structure of a

Hilbert space. This Hilbert space is called a direct integral and is sometimes written

as

(77) L2
µ(π) ≡

∫ ⊕
Y

Hλ dµ(λ).

Because two different measurability structures define the same set of measurable

functions, it is useful to know that a measurability structure exists rather than

specifying one. This is the motivation behind the following Lemma.

Lemma 3.13. Let (Y,Σ, µ) and π :
⋃
λ∈Y Hλ → Y be as above. Suppose that the

function

Y → [0,∞](78)

λ 7→ dimHλ(79)

is measurable. Then there exists a measurability structure on the Hilbert family.

Proof. �

Example 3.14. Let Y be a countable measurable set, Σ the set of all subsets of

Y, and µ the counting measure on Y. Let {Hλ : λ ∈ Y } be a collection of Hilbert

spaces. Then

(80)

∫ ⊕
Y

Hλ dµ(λ) =
⊕
λ∈Y

Hλ.

Notice that in the case of the previous example, Hλ0 embeds into
∫ ⊕
Y
Hλ dµ(λ).

This actually happens under the following conditions.

Proposition 3.15. Let
∫ ⊕
Y
Hλ dµ(λ) be a direct integral for a measure space

(Y,Σ, µ) and Hilbert family π :
⋃
λ∈Y Hλ → Y. If λ0 ∈ Y has measure µ(λ0) > 0,

then the map

Hλ0 →
∫ ⊕
Y

Hλ dµ(λ)(81)

ψ 7→

λ 7→


ψ√
µ(λ0)

if λ = λ0

0 otherwise

(82)

defines an isometric embedding of Hλ0
in
∫ ⊕
Y
Hλ dµ(λ).

3.3. The spectral theorem via direct integrals.

Theorem 3.16. Let A be a bounded self-adjoint operator on H. Then there exists

a σ-finite measure µ on σ(A), a direct integral
∫ ⊕
σ(A)
Hλ dµ(λ), and a unitary map

U : H →
∫ ⊕
σ(A)
Hλ dµ(λ) such that

(83) [UAU−1(s)](λ) = λs(λ)

for all sections s ∈
∫ ⊕
σ(A)
Hλ dµ(λ).
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Here’s how I understand the idea of a direct integral associated to a self-adjoint

operator A. First let’s suppose that the spectrum σ(A) solely contains eigenval-

ues and is discrete and countable. Let λ0 be such an eigenvalue. Then Hλ0 is

the Hilbert subspace of
⊕

λ∈Y Hλ that contains all vectors with eigenvalue λ0. In

physics parlance, this is called degeneracy. A great example of such an operator

is the Hamiltonian (energy) for a two-dimensional simple harmonic oscillator. An-

other example is a system with spherical symmetry. Then the square of the angular

momentum operator will have degeneracy. In general, the spectrum σ(A) of A need

not contain any eigenvalues. The description above still applies in a more general

sense. One typically thinks of the Hilbert family as containing the information

about degeneracy for generalized eigenvectors. This will all be made more pre-

cise with explicit examples after the spectral theorem for unbounded operators is

discussed.

The above theorem can be modified slightly so that one works over a measure

space (not necessarily the spectrum of A) with a Hilbert family over it where the

dimensions are all one. In other words, the sections are simply ordinary square-

integrable functions over this measure space. The cost of this simplicity is that the

multiplication operator becomes slightly more complicated (rather than just the

identity function).

Theorem 3.17. Let A be a bounded self-adjoint operator on H. Then there exists

a σ-finite measure space (Y,Σ, µ), a bounded, measurable, and real-valued function

h : Y → R, and a unitary operator U : H → L2(Y ) such that

(84) [UAU−1(ψ)](λ) = h(λ)ψ(λ)

for all ψ ∈ L2(Y ) and λ ∈ Y.

There are two theorems that give sort of uniqueness results. But first a definition.

Definition 3.18. Let µ and ν be two measures on (Y,Σ). µ is said to be absolutely

continuous with respect to ν if for all E ∈ Σ with ν(E) = 0 then µ(E) = 0. When

this happens, we write µ ≤ ν. µ and ν are said to be equivalent or mutually

absolutely continuous if µ ≤ ν and ν ≤ µ.

Theorem 3.19. Let A be a bounded self-adjoint operator on H. Let µ(1) and µ(2) be

two σ-finite measures on σ(A) with two associated direct integrals
∫ ⊕
σ(A)
H(1)
λ dµ(1)(λ)

and
∫ ⊕
σ(A)
H(2)
λ dµ(2)(λ). If furthermore (one can always make this happen without

changing the direct integral) dimH(j)
λ > 0 for almost all λ with respect to µ(j) for

both j = 1, 2, then µ(1) and µ(2) are mutually absolutely continuous and

(85) dimH(1)
λ = dimH(2)

λ

for almost all λ with respect to µ(j) for both j = 1, 2.

Although you can’t hear the shape of a drum [5], the following theorem gives a

result for how to determine an operator up to unitary equivalence from its spectrum

and additional data.

Definition 3.20. Let A(1) ∈ B(H1) and A(2) ∈ B(H2). Then A(1) is unitarily

equivalent to A(2) if there exists a unitary operator U : H1 → H2 such that

(86) A(2) = UA(1)U−1.
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Theorem 3.21. Let A(1) ∈ B(H(1)) and A(2) ∈ B(H(2)) be bounded operators on

separable Hilbert spaces. Let (σ(A(1)),Σ(1), µ(1)) and (σ(A(2)),Σ(2), µ(2)) be two

σ-finite measure spaces with associated direct integrals
∫ ⊕
σ(A(1))

H(1)
λ dµ(1)(λ) and∫ ⊕

σ(A(2))
H(2)
λ dµ(2)(λ) satisfying dimH(j)

λ > 0 for almost all λ with respect to µ(j)

for both j = 1, 2. Then A(1) and A(2) are unitarily equivalent if and only if the

following conditions are satisfied.

i) The spectra of both A(1) and A(2) are equal, σ(A(1)) = σ(A(2)).

ii) The measures µ(1) and µ(2) are mutually absolutely continuous.

iii) The two functions

(87) λ 7→ dimH(1)
λ and λ 7→ dimH(2)

λ

agree almost everywhere.
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4. Fourth lecture: the spectral theorem for unbounded operators

In this lecture, we will discuss unbounded operators, the spectrum of an un-

bounded operator, and the spectral theorem in its two forms. One version gives us

a way to discuss functions of unbounded operators while the other version describes

generalized eigenspaces for unbounded operators in terms of a direct integral. Most

of this lecture is a repetition of what was done earlier for bounded operators. Few

examples will be given in this lecture since many of them were already mentioned

earlier. Finally, we will state Stone’s theorem which is a wonderful result that al-

lows us to forget about issues of domains of operators provided that we work with

a different set of operators.

4.1. Unbounded operators. We’ve encountered several unbounded operators that

we’d like to consider as physical observables/self-adjoint operators. However, the

following fact shows that it is impossible to be simultaneously self-adjoint and not

bounded.

Proposition 4.1. Let A : H → H be a linear operator. If A satisfies

(88) 〈Aψ, φ〉 = 〈ψ,Aφ〉

for all φ, ψ ∈ H, then A is bounded.

Read in its contrapositive, if A is not bounded, A cannot be self-adjoint.

Proof. The proof involves a bit of analysis. See Corollary 9.9 of Hall. �

Unbounded operators are typical in quantum theory. Therefore, we should mod-

ify what we mean by self-adjointness to allow for such a notion for unbounded

operators. First we recall what an unbounded operator is.

Definition 4.2. An unbounded operator A on a Hilbert space H is a linear map

on some dense domain dom(A) ⊂ H to H :

(89) A : dom(A)→ H.

Remark 4.3. One awkward issue with unbounded operators is that combinations of

such operators might not result in unbounded operators, namely, they might not be

densely defined. For instance, if A and B are unbounded operators on H, then A+B

is a linear map defined on dom(A+B) = dom(A)∩ dom(B). Even if each separate

domain is dense, the intersection need not be. However, there are several different

types of sufficient conditions that guarantee certain nice properties (for instance,

see Proposition 9.13 and Theorem 9.37 of Hall). The product of two operators will

be discussed when we get to the spectral theorem.

Notice that an unbounded operator A is not even bounded on its domain! Indeed,

if it was, it could be extended uniquely to a bounded operator on all of H. This

follows from the Bounded Linear Transformation Theorem, which is reproduced

here for convenience.

Theorem 4.4. Let V be a normed vector space, W a Banach space, and A a

bounded linear map defined on a dense domain dom(A) of V to W, i.e.

(90) A : dom(A)→W.

Then there exists a unique bounded linear map Ã : V →W such that Ã|dom(A) = A.
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This theorem allows us to make a definition for the adjoint of an unbounded

operator.

Definition 4.5. Let A be an unbounded operator on a Hilbert space H with domain

dom(A). Let φ ∈ H be a vector such that the linear functional

dom(A)→ C(91)

ψ 7→ 〈φ,Aψ〉(92)

is bounded. Then by Riesz’ theorem (Theorem 1.3), there exists a unique χφ ∈ H
such that 〈φ,A · 〉 = 〈χφ, · 〉. Define the operator A† on such φ by A†φ := χφ. Then

the domain of A† is the set of all such φ for which Riesz’ theorem can be applied

(93) dom(A†) := {φ : 〈φ,A · 〉 is bounded for all φ ∈ dom(A)}.

This defines/constructs the adjoint A† of A.

Note that A† is only linear on its domain. It need not be bounded! Furthermore,

even if dom(A) is dense in H, dom(A†) need not be.

Definition 4.6. An unbounded operator A on H is self-adjoint if dom(A†) =

dom(A) and A = A† on these domains.

From now on, the term “self-adjoint operator” will be short for “self-adjoint

unbounded operator.” Now that we’ve modified what we mean by self-adjointness,

we should also modify what we mean by the spectrum of an unbounded operator.

Many of the theorems we’ve stated before for bounded operators remain true in the

unbounded operator case.

Definition 4.7. Let A be an unbounded operator on H with domain dom(A). The

spectrum of A, denoted by σ(A), is the set of all λ ∈ C such that there does not

exist a bounded operator B with the following two properties.

i) For all ψ ∈ H, Bψ ∈ dom(A) and (A− λI)Bψ = ψ.

ii) For all φ ∈ dom(A), B(A− λI)φ = φ.

Theorem 4.8. Let A : H → H be an unbounded operator.

i) Then the spectrum σ(A) is a closed subspace of C.
ii) If A is self-adjoint, then σ(A) ⊂ R ⊂ C.

iii) If A is self-adjoint, then λ ∈ R is in σ(A) if and only if there exists a sequence

ψn of nonzero vectors in dom(A) such that

(94) lim
n→∞

‖Aψn − λψn‖
‖ψn‖

= 0

Note that the spectrum of an unbounded operator is not necessarily bounded

(and therefore not necessarily compact). In fact, several more interesting facts are

true but one uses the spectral theorem to prove these results. One of these is a

strengthening of the previous statement. Namely, if A is self-adjoint and has a

bounded spectrum, then it is necessarily bounded!

Another important fact can be stated with regards to the spectrum.

Definition 4.9. Let A be an unbounded operator on H with domain dom(A). Then

A is said to be bounded below by a constant c ∈ R if 〈ψ,Aψ〉 ≥ c‖ψ‖2 for all

ψ ∈ dom(A). If c = 0, then A is said to be non-negative.
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Proposition 4.10. Let A be an unbounded operator on H. If A is bounded below

by c, then σ(A) ⊂ [c,∞).

Furthermore, an interesting result of the spectral theorem is that if σ(A) ⊂
[c,∞), then A is bounded below by c.

4.2. Some facts about physical operators in quantum mechanics. Here we

merely state some theorems about operators of interest in quantum mechanics and

also some theorems that tell us when certain sums of unbounded operators are still

unbounded. We also give an example of a situation where this fails.

Theorem 4.11. Let V : Rn → R be a measurable function and define the linear

operator V (X̂) on a domain dom(V (X̂)) in L2(Rn) by

(95) (V (X̂)ψ)(x) := V (x)ψ(x)

for all ψ in the domain

(96) dom(V (X̂)) :=
{
ψ ∈ L2(Rn) | (x 7→ V (x)ψ(x)) ∈ L2(Rn)

}
.

Then dom(V (X̂)) is dense in L2(Rn) and V (X̂) is self-adjoint on this domain.

In particular, the position operator is self-adjoint on its respected domain. By

Fourier transform, it also follows that the momentum operator is self-adjoint on its

respected domain. One could explicitly prove that the momentum operator has a

dense domain and that it is self-adjoint on this domain explicitly using a notion of

derivatives for functions in L2(Rn) but we won’t describe this. Similarly, if P̂ is the

momentum operator, then P̂ 2 is also densely defined and self-adjoint on its domain.

A difficult theorem to prove that combines the previous results is the following (one

that most physicists take for granted).

Theorem 4.12. Let V : Rn → R be a measurable function with n ≤ 3. If V can

be decomposed as V = V1 + V2 with both V1 and V2 real, measurable, and V1 is

in L2(Rn) while V2 is bounded, then the operator P̂ 2

2m + V (X̂) is self-adjoint on

dom(P̂ 2).

The operator P̂ 2

2m − X̂
4 is not self-adjoint (nor is it essentially self-adjoint) on

C∞c (R), the set of smooth compactly supported functions on R. We didn’t define

what essentially self-adjoint means but it is a slightly weaker notion than self-

adjoint.

4.3. The spectral theorem. First, we will describe how to take a measurable

function, for now on an arbitrary measurable space (Y,Σ), and with a projection-

valued measure, obtain an unbounded operator. This is important because when

we discuss operators in quantum mechanics, sometimes operators are plugged into

the domain of a function such as V (X̂) in our earlier theorem from today. Recall

that for any projection-valued measure µ on (Y,Σ), and any state ψ ∈ H, one can

construct a non-negative, real-valued ordinary measure µψ on Y by the formula

µψ(E) := 〈ψ, µ(E)ψ〉. The physical significance of this will be explained when we

consider the special case of Y = σ(A), the spectrum of a self-adjoint operator. The

real number µψ(E) will represent the probability of measuring a state ψ (provided

‖ψ‖ = 1) to have a particular value for the operator A in the subset E ⊂ σ(A).
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Proposition 4.13. Let (Y,Σ) be a measurable space and µ a projection-valued

measure on it with values in B(H). Let f : Y → C be a measurable function. Then

there exists a unique unbounded operator
∫
Y
fdµ on H with domain

(97) dom

(∫
Y

fdµ

)
:=

{
ψ ∈ H |

∫
Y

|f(λ)|2dµψ(λ) <∞
}

such that

(98)

〈
ψ,

(∫
Y

fdµ

)
ψ

〉
=

∫
Y

f(λ)dµψ(λ)

for all ψ ∈ dom
(∫
Y
fdµ

)
. Furthermore,

(99)

〈(∫
Y

fdµ

)
ψ,

(∫
Y

fdµ

)
ψ

〉
=

∫
Y

|f(λ)|2dµψ(λ)

for all ψ ∈ dom
(∫
Y
fdµ

)
.

This last condition should explain why the domain of
∫
Y
fdµ is defined the way

it is. In general, one wants
(∫
Y
fdµ

)
ψ to still be in H, which means that

(100)

〈(∫
Y

fdµ

)
ψ,

(∫
Y

fdµ

)
ψ

〉
<∞

should hold.

Proposition 4.14. Using the assumptions from the previous theorems, if f is

bounded, then dom
(∫
Y
fdµ

)
= H and

∫
Y
fdµ is a bounded operator. If f is real-

valued, then
∫
Y
fdµ is self-adjoint on dom

(∫
Y
fdµ

)
.

Now we specialize to the special case where the measure space is the spectrum

of some unbounded operator A. In this case, we would like to know that such

a projection-valued measure exists. And using this measure, we want to define

functions of that operator.

Theorem 4.15. Let A be a self-adjoint operator on H with domain dom(A). Then

there exists a unique projection-valued measure µA on σ(A) with values in B(H)

such that

(101)

∫
σ(A)

λdµA(λ) = A.

Definition 4.16. Let A be a self-adjoint operator on H and let f : σ(A)→ R be a

measurable function. Define

(102) f(A) :=

∫
σ(A)

f(λ)dµA(λ).

I can’t resist to say something personal at this point. For the longest time, in my

physics classes, I’ve been told that one can define f(A) for “reasonable” functions

f. The only ones that seemed sense to me at the time were analytic functions,

and I felt this was too restrictive. The above result generalizes this to almost any

imaginable function.

Theorem 4.17. Let A be a self-adjoint operator on H with domain dom(A). Then

there exists a σ-finite measure µ on σ(A), a direct integral
∫ ⊕
σ(A)
Hλ dµ(λ), and a

unitary map U : H →
∫ ⊕
σ(A)
Hλ dµ(λ) such that

(103) [UAU−1(s)](λ) = λs(λ)
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for all sections s ∈ U(dom(A)), where

(104) U(dom(A)) =

{
s ∈

∫ ⊕
σ(A)

Hλ dµ(λ) |
∫
σ(A)

‖λs(λ)‖2λdµ(λ) <∞

}
.

If one is not happy with thinking about sections and one wants to remove the

degeneracy from the description, there is also the following theorem that relates any

function of an operator to a multiplication operator on some measurable space.

Theorem 4.18. Let A be a self-adjoint operator on H with domain dom(A). Then

there exists a σ-finite measure space (Y,Σ, µ), a measurable, real-valued function

h : Y → R, and a unitary operator U : H → L2(Y ) such that

(105) [UAU−1(ψ)](λ) = h(λ)ψ(λ)

for all ψ ∈ U(dom(A)) and λ ∈ Y, where

(106) U(dom(A)) =
{
ψ ∈ L2(Y ) | hψ ∈ L2(Y )

}
.

4.4. Stone’s theorem. All this business about bounded versus unbounded oper-

ators is actually quite difficult to keep track of. Is there any way to make our lives

easier? You’d be surprised to hear that the answer to this question is “yes” and

the reason is Stone’s theorem. Stone’s theorem basically says that the exponential

of an unbounded operator is a bounded operator. Therefore, it is simpler to use the

exponentiated versions of operators if one wants to avoid questions about domain

and continuity. In this section, we will review Stone’s theorem, describe its appli-

cation to time evolution, and describe the Heisenberg algebra in terms of unitary

operators via the Weyl relations.

Definition 4.19. Let U(H) be the subspace of B(H) of unitary operators. A one-

parameter unitary group on H is a function U : R→ U(H) satisfying

(107) U(0) = idH & U(s+ t) = U(s)U(t)

for all s, t ∈ R. It is strongly continuous if

(108) lim
s→t
‖U(t)ψ − U(s)ψ‖ = 0

for all ψ ∈ H and all t ∈ R. This amounts to saying that U : R → U(H) is

a continuous group homomorphism with respect to the strong operator topology on

U(H) (and not the usual topology in terms of the operator norm).

The fact that we need the strong operator topology is a bit annoying, however it

turns out that if the infinitesimal generator (see the following definition) associated

to U is a bounded operator, then U is continuous with respect to the operator norm

topology (and vice versa).

Definition 4.20. Let U be a strongly continuous one-parameter unitary group on

H. The infinitesimal generator of U is the operator A defined by

(109) H ⊃ dom(A) 3 ψ 7→ −i lim
t→0

(
U(t)ψ − ψ

t

)
.

The domain is given by the set of ψ for which the right-hand-side is defined.
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Given a self-adjoint operator A, one can use the exponential function to define

the exponential and for every t ∈ R the operator

(110) U(t) := eitA.

Note that we need to use a self-adjoint operator because the spectral theorem

requires us to do so.

Proposition 4.21. A be a self-adjoint operator on H with domain dom(A). Define

the operator U(t) as above for every t ∈ R. Then the following three things are true.

(a) The function

(111) R 3 t 7→ U(t)

is a strongly continuous one-parameter unitary group (in particular, it is a

bounded operator on H).

(b) For all ψ ∈ dom(A),

(112) Aψ = −i lim
t→0

(
U(t)ψ − ψ

t

)
.

(c) For all ψ ∈ H, if the limit

(113) −i lim
t→0

(
U(t)ψ − ψ

t

)
exists, then ψ ∈ dom(A) and Aψ = −i limt→0

(
U(t)ψ−ψ

t

)
.

The first statement is probably the most surprising. This says that one can

take an unbounded self-adjoint operator and turn it into path of bounded unitary

operators via the exponential. The second and third statement together say that

(114) A = −i lim
t→0

(
U(t)− I

t

)
.

Stone’s theorem is a sort of converse to the previous proposition.

Theorem 4.22 (Stone). Let U be a strongly continuous one-parameter unitary

group on H. Then the infinitesimal generator A of U is a self-adjoint operator (in

particular, it is densely defined) and U(t) = eitA for all t ∈ R.

time evolution

Weyl relation
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5. Fifth lecture: degeneracy and perturbation theory—a geometric

picture with several examples

In this lecture we will discuss the relationship between direct integrals, which

were used in the spectral theorem in the last lecture, and degeneracy in quantum

mechanics. We will then discuss perturbation theory and how this affects the

degeneracy.

Example: two-dimensional harmonic oscillator, hydrogen atom, the quantum

Hall effect

6. Sixth lecture: the Stone-von Neumann theorem

7. Seventh lecture:
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