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The Zak transform is defined for functions f : R→ C by

(Zf)(x, ξ) =
∑
k∈Z

f(x+ k)e−2πikξ (1)

where ξ ∈ R. It has many properties. First,

(Zf)(x, ξ + 1) = (Zf)(x, ξ). (2)

Therefore it suffices to consider ξ ∈ R/Z. Second,

(Zf)(x+ 1, ξ) = e2πiξ(Zf)(x, ξ) (3)

by a change of variables. So it’s not quite periodic in the first variable but the function is still determined

by the values of x ∈ R/Z. Therefore, although it is not periodic, it is sufficient to define the Zach

transform in [0, 1)2. Z is well-defined for f ∈ L1(R). We need the series to converge absolutely, which

means that ∫ 1

0

∑
k∈Z

|f(x+ k)|dx =
∑
k∈Z

∫ k+1

k

|f(y)|dy =

∫
R
|f | <∞. (4)

Recall, given a function f, the Fourier transform is defined by

(Ff)(ξ) = f̂(ξ) =

∫
R
f(x)e−2πixξdx (5)

on R. Parseval’s theorem says that if f ∈ L2(R), then

‖Ff‖2 = ‖f‖2. (6)

We also have Poisson’s summation formula, which says that∑
k∈Z

f̂(k) =
∑
k∈Z

f(k). (7)

Finally, we have another formula called the Shannon-Whittaker sampling theorem, which is the basis

of digital technology. It says that if supp(f̂) ⊂ [−B/2, B/2] (bump-limited), then

f(x) =
∑
k∈Z

f

(
k

B

)
sin(π(Bx− k))

π(Bx− k)
(8)
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where we sometimes call the latter function

sinc(x) =
sin πx

πx
. (9)

This is called the sampling theorem because we sample the function at some fixed values. The num-

ber you need for a decent approximation is related to B. This is the foundations of DCT, digital

communications technology (and also discrete cosine transform).

Our goal for this talk is to prove these three theorems using the Zak transform. The reason for this

is because typically these theorems are non-trivial to prove. The Zak transform offers a simple way to

prove them.

First recall that {e2πinx}n∈Z is a basis of L2([0, 1]).

Proposition 1. The Zak transform is an isometric isomorphism from L2(R) onto L2([0, 1)2).

Proof. It suffices to show that orthonormal bases go to orthonormal bases. The orthonormal basis for

L2(R) that we will choose is rather clever and is given by

{En,k(x) := e2πinxχ[0,1)(x− k)}n∈Z,k∈Z, (10)

where χE is the indicator function on E ⊂ R defined by

χE(x) :=

{
1 if x ∈ E
0 otherwise

. (11)

Then

(ZEn,k)(x, ξ) =
∑
j∈Z

e2πin(x+j)χ[0,1)(x+ j − k)e−2πijξ (12)

= e2πinx
∑
l∈Z

χ[0,1)(x+ l)e−2πi(k+l)ξ (13)

= e2πinxe−2πikξ
∑
l∈Z

χ[0,1)(x+ l)e−2πilξ (14)

= e2πi(nx−kξ)χ[0,1)(x) (15)

= e2πi(nx−kξ) (16)

which is a basis of L2([0, 1)).

A bit of history. Joshua Zak published his ideas in 1967 and 1968. His second version is more

detailed. He called it the kq-representation. He used it to describe electrons moving in a crystal.

Definition 1. A modified version of the Zak transform is given by

(Z̃g)(x, ξ) := (Zg)(ξ,−x) =
∑
k∈Z

g(ξ + k)e2πikx. (17)

This is also an isometry from L2(R) to L2([0, 1)2). We also define U : L2([0, 1)2)→ L2([0, 1)2) by

(Uf)(x, ξ) = e−2πixξf(x, ξ). (18)

This is an isometry from L2([0, 1)2) to itself.
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Theorem 1. The following are true using our notation from above.

(a) First,

(Z̃−1UZ)(f) = Ff. (19)

(b) Second,

(Z−1U∗Z̃)(g) = F−1g (20)

where

(F−1g)(ξ) =

∫
R
g(x)e2πixξdx (21)

This is a result from a paper done jointly with Sikic, Weiss, and Wilson in 2010.

Proof. The inverse of the Zak transform is

(Z−1ϕ)(x) =

∫ 1

0

ϕ(x, ξ)dξ (22)

and the inverse of the modified version of the Zak transform is

(Z̃−1ϕ)(ξ) =

∫ 1

0

ϕ(x, ξ)dx. (23)

Let’s check the first is an inverse of the Zak transform

((Z−1(Zf))(x) =

∫ 1

0

(Zf)(x, ξ)dξ (24)

=

∫ 1

0

∑
k∈Z

f(x+ k)e−2πikξdξ (25)

=
∑
k∈Z

f(x+ k)

∫ 1

0

e−2πikξdξ (26)

=
∑
k∈Z

f(x+ k)δk,0 (27)

= f(x). (28)

It works! Thus, the second part of the theorem trivially follows by the following computation

(Z−1U∗Z̃g)(x) =

∫ 1

0

(U∗Z̃g)(x, ξ)dξ (29)

=

∫ 1

0

e2πixξ(Z̃g)(x, ξ)dξ (30)

=

∫ 1

0

∑
k∈Z

g(ξ + k)e2πix(k+ξ)dξ (31)

=
∑
k∈Z

∫ k+1

k

g(ξ)e2πixξdξ (32)

=

∫
R
g(ξ)e2πiξxdξ (33)

= (F−1g)(x). (34)

The rest of the proof is left to the reader.
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Parseval’s equality immediately follows from part (a) of the above theorem because each of the

operators Z̃−1, U, and Z is an isometry.

Now we come to the Poisson summation formula. Let’s write out (a) in the following way

(U(Z(f)))(x, ξ) = e−2πixξ
∑
k∈Z

f(x+ k)e−2πikξ =
∑
k∈Z

(Ff)(ξ + k)e2πikx. (35)

If you take x = 0 = ξ then ∑
k∈Z

f(k) =
∑
k∈Z

f̂(k), (36)

which is exactly Poisson’s summation formula.

Now let’s prove the Shannon-Whittaker formula. Using the same expression, just take x = 0. Then

we have ∑
k∈Z

f(k)e−2πikξ =
∑
k∈Z

(Ff)(ξ + k). (37)

Suppose first that suppf̂ ⊂ [−1/2, 1/2]. Then, for ξ ∈ [−1/2, 1/2], we have∑
k∈Z

(Ff)(ξ + k) = (Ff)(ξ). (38)

Therefore, we have ∑
k∈Z

f(k)e−2πikξ = (Ff)(ξ). (39)

Then we have

f(x) = (F−1f̂)(x) (40)

=

∫ 1/2

−1/2
f̂(ξ)e2πixξdξ (41)

=

∫ 1/2

−1/2

∑
k∈Z

f(k)e−2πikξe2πixξdξ (42)

=
∑
k∈Z

f(k)

∫ 1/2

−1/2
e−2πi(k−x)ξdξ (43)

By a simple reparametrization, we can obtain the Shannon-Whittaker formula.

Another historical note. Andrew Weil also published a paper with the same mathematical transform.

However, we name it after Zak. In 1950, Israel Gelfand gave similar proofs to what we have given here.

Some other comments. You can write a Wigner distribution using the Zak transform. There is a paper

by Janssen that has the formulas.
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